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We consider the interaction of a finite number of nonrelativistic particles with a positive or zero mass
quantum field. We show that in the weak coupling limit the quantum field gives rise to an effective
interaction between the particles of a Yukawa or Coulomb type, as well as, in some cases, a mass
renormalization. In a simple exactly soluble model we investigate the higher order radiation processes.

1. INTRODUCTION

We present a rigorous derivation of the nonrelativis-
tic N-body Schrodinger ‘Hamiltonian

ZN> 1
H =~
1 2

A+ Vg, - qy)

r r<s

for N quantum particles, starting from a quantum field
theoretic Hamiltonian where the interaction between the
particles depends upon heir exchange of virtual mesons,
or phonons. The Hamiltonian H’ is obtained by taking
the weak coupling limit lhretween the particles and the
meson field at the same time as the particle masses
become infinite. These limits are closely related to the
usual treatment, where vne supposes the particle are
static so that the dynamics of the quantum field be-
comes exactly soluble.

Although our model is similar to several others de-
scribing particles coupled to infinite reservoirs,*=® it
has several significant variations. The first, that the
asymptotic evolution of the particles is of Hamiltonian
type, with no dissipative terms, is a consequence of the
infinite mass of the particles and the zero temperature
of the quantum field. Because of the absence of dissipa-
tive terms we can describe the time evolution at the
Hilbert space level instead of on the space of trace
class operators. Moreover, because we do not need an
infinite order perturbation expansion it is possible to
remove the volume cutoff on the interaction Hamiltonian.

In an earlier version of the present paper we consider
only the case where the mesons have positive mass. The
extension to zero mass field particles (photons or
phonons) leads to mathematical problems caused by the
infrared singularity. However, since we study the time
evolution for finite times this singularity does not have
effects as serious as in scattering theory, *'° we are now
able to solve the case where the field particles are
relativistic spinless bosons of positive or zero mass.

In the second part of the paper we study the emission
of bosons by the particles, a process which depends on
the zero mass of the bosons. By means of a detailed
analysis of the Friedrichs’s model we show that this
process involves terms which are of higher than second
order in the coupling constant . Non integer powers
of the coupling constant are shown to arise because of
the form of the infrared singularity.
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For maximum generality we specify our model in an
abstract form; some examples are described in Sec. 3.
The particles are represented by a Hilbert space 4 with
Hamiltonian H. The quantum field is described by a
Hilbert space 7 with a vacuum state © and a Hamiltonian
F such that FQ =0, The interaction between the particles
and the quantum field is represented by the operator A
on /2 7. The total Hamiltonian of the system is then

H =\2(2H+M +F) 1.1)

which we study in the weak coupling limit A —0. The
factor A% on H may be interpreted as a mass scaling for
the particles while the factor A™ on the whole Hamilton-
ian may be interpreted as a time scaling.

Our first goal is to find conditions on the various
operators under which
lim exp(-iH,) (¢ Q) = (exp[- i(H + K)t|$)® Q (1.2)
A=0
for all zpeﬁ, tc R, and some effective interaction oper-
ator K on /7. The conditions are given in terms of the
operators appearing in the interaction Hamiltonian
N
A=Y,/ 5,9 ¢,d%,
r-1 R3 )
where §,, are operators on /4 localized at the point
x < R® and ¢,, are field operators on 7 localized at the
point x € IR®, Qur technical assumptions on these opera-
ors require that ultraviolet cutoffs be incorporated into
their definition.

2. THE LIMITING HAMILTONIAN
We suppose that #/ contains dense subspaces

Ho CH CH CHy=H

which are again Banach spaces with respect to norms
Il *1l; such that each injection in the above sequence is a
contraction. We also suppose that 7 contains subspaces

CQ=F, F,0 Fptl Fy= 7,
which are again Banach spaces with respect to norms
I ll; such that each injection in the above sequence is a
contraction. We identify // with the subspace /= § of
#% 7, define P, to be the orthogonal projection L of
#% 7 onto this subspace, and put P, =1-P,,

1.3)

The above spaces and norms are used to formulate our
conditions on the various operators,

(A1) H is a bounded operator from /4, into #/ which is
symmetric as an operator on /4.

(A2) F is a nonnegative self-adjoint operator on 7
such that FQ =0, Moreover ¢ ¥ are bounded operators
on 7, depending strongly continuously on 3 0 for all i,
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(A3) 5,, are bounded operators from /4 to //,,, depend-
ing strongly continuously on x « R®., Moreover

s, dPx<scuyl,
R3
fori=0,1,2, and 1 s7 <n,
(A4) ¢,, are bounded operators from 7, to 7, , depend-
ing strongly continuously on x « R®. Moreover
W@ i,y scliglly
forallxceR*and i=0,1,2 and 1 <7 <n,
(A5) (@) vac=0 for all xe R® and 1 < <n, For our

next two conditions we suppose that 8 is a constant
such that

3-v5
2

(AB) 1e™F @, Qi < ct® for all £> 0 and x € R® and
lsrsn,

0<B<

£ 0.382. (2.1)

AT et g e ™o, Qi,< et 4P for all £,u> 0 and
x,ye R*and 1<»,s <n.

In order to make sense of the formal expression

n .
A:L,jgén‘@(pndi‘x, (2.2)
r=11R _
we introduce some subspaces of /®7. Defining [, to be
the Banach space projective tensor product /-/,-®},~ we

note that
DOQ/)IQDZQD:;Q/-/@}’

where each injection is a contraction. Moreover under
the identification of / with /®Q, /), is a dense subspace
of H.

Lemma 2.1: Under conditions (Al)— (A7) the formula
(2.2) defines a symmetric operator 4 on /), satisfying
conditions (B1)— (B7) below.

Proof: If §, €/ and 4, 7, then

H 2 -j i 61':c®<prxdgx (w1®w2)

r=l g3

i+l

<20 N6 1 @y, dx
MRS 3

i

S e, I g, Ny

by (A3) and (A4). The definition of the projective tensor
product norm leads to

HAPN,,, < nc iyl
for all ¢« /);, which proves (B3).
To prove (B4) we note that by Eq. (2.1)

0>(r-1)>-1>2(8-1).
Since

[(@etF@r .| <lletFo, Qe Q<!
and

@50, 0 < e 20 Rl e tf2g Q||
< /PR,

it follows that

Jy K00, | ¢ < o (2.3)

346 J. Math. Phys., Vol. 20, No. 3, March 1979

for some ¢” independent of x, y € IR® and of »,s. (B4) now
follows from the expression

" w
K=~ 7] -/ms Jo e-mésyérx‘\- que-w(p”‘>”’°
ry8=1

(2.4)
xXdtd3x d®y
whose convergence for all y /), and as u+ 0 is a con-
sequence of (A3).

(B5) is an obvious consequence of (A5). Since (B6)
and (B7) are proved in a similar fashion from (A6) and
(AT), respectively, we only treat the first one. Noting
that

d)l = Z JmB —/'ow e-tue-tF(O‘rx(g (@x)(¢®ﬂ)(# d3x7

r=1

we obtain

il < 25 S d) e e g, i, s

=1

énczllw!loj‘:e"“t"‘dt

by (A3) and (A8), whence
Hlly < ne®l[ 9l T (B 18,
as required.
The conditions (B1)—(B7) are:

(B1) H is a bounded operator from //, into // which
is symmetric as an operator on 4.

(B2) F is a nonnegative self--adjoint operator on 7
such that FQ2=0.

(B3) The operator A on /), is bounded from /), to /.,
for i=0,1,2.

(B4) K, = - P,A(F + u)"'AP, are bounded operators
from /), into # for all > 0. Moreover

lim K, = K

240
exists for all /).
(B5) (A@, )y =0 for all ¢, e [,.
(B6) U v/, and p>0, then
iy = (F + p)rAp
lies in /), and satisfies
Hylly < cn~®hll,.
BN Iy, and i,v>0, then
by = (F+ )P AF +v) A
lies in /), and satisfies
syl < e u™Pu=l1dll,.

Our last two conditions, which do not follow from
(A1)—(AT), are

(B8) The operator (H +K) on /), is essentially self-
adjoint as an operator on #/.

(B9) There are self-adjoint operators H, on /L/-;»‘} such
that

H p=Hy+ 1Ay + X°Fy
for all ¢ in /), domPF,

(2.5)
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Before proving our main theorem we make some
comments on the above conditions.

(i) Concerning (B9) we point out that it is not neces-
sary for H, to be essentially self-adjoint on 7, domF.
Moreover it is not relevant for our purposes to enquire
as to which of the self-adjoint extensions is the physi-
cally “correct” one.® The existence of a self-adjoint
extension is necessary, but this is a fairly weak con-
dition as von Neumann’s condition (Ref. 6, p. 143)
shows.

(ii) Condition (B8) is of course satisfied if X is norm
bounded and H is essentially self-adjoint on /),. How-
ever the condition in its present form allows us to deal
with much more singular perturbations K. In order to
verify (B8) one may use the expression

n .
K == 2 JIRS 55}'67‘;: ( (psyF-l (prx>vac dsx dgv (2 : 6)

r,8=1
deduced from Eq. (2.4).

(iii) Ignoring technicalities our only important con-
ditions are (A5)—(A7), which are essentially estimates
on the truncated Euclidean n-point functions for » < 4,

If the field particles have positive mass m the quantities
t*-* may be replaced by e™™t.

(iv) The peculiar restriction (2.1) on the range of
values of 8 is surely an artifact of our proof. We con-
jecture that any § with 0< < $ will do. These bounds
are necessary for our proof of Eq. (2.3) which in turn
is needed to prove the existence of the operator X in
(B4).

(v) (A5) can actually be deduced from (A6) by taking
the limit / — +  and using (A2).
Theorem 2.2: Under conditions (B1)—(B9) we have
lim exp(—iH, ) =exp(—i(H + K))§ 2.7
for all ¢y €/ and /¢ R,

Pyoof: This is yet another variation on calculations
in Refs. 7 and 8. It is sufficient to show that for all
Yo, there exist ¢, € /), 1" domF such that

2.8)

Vimd, =do, 1mH, = (H +K)y,.
We take
h=dt i+
where
e, lidomF, §,=[),(1domF
are specified precisely below.
We have to estimate
E = HAXNTAFNTPE) U+ iy + ) - (H+K)g,
=AY F Y 40y )
TP AL, - Ko}
+{ATIPLAY, + AR FY, 220 )
SHG = NPT+ Hiy ~ X720y, + 1Ay,
where y, 8§ are to be specified.

We eliminate the first term by putting
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P == AMF+A")1Ay,

so that §, €/, NdomF and
lldylly < e A*-87

by (B6). Hence
lim {lgll + 1H )+ 11327yl =0

provided
1-5y>0 (2.9)
and
-1-pgy+v>0. (2.10)

According to (B4) the second term converges to zero

as y — 0 provided
y>0, (2.11)

We eliminate the third term by putting

Y= —MF +28)P Ay,
=2AF +20)7PA(F+ 2514y,

so that ¢, </, dom F and
Il fyll, < o288
by (B7). Hence
1;%’{”“)2” + IHGI + 20, + (I Ayl }=0

provided
2-By-p6>0 (2.12)
and
6By ~p6>0 (2.13)
and
(2.14)

To prove that Eq. (2.8) is satisfied we therefore need
only find y, ¢ satisfying Egs. (2.9)—(2.14),

1-py-56>0.

The last three equations may be rewritten as

B s lopy
1-8 B

assuming 0< 3< 1, This is soluble provided
By <1 -1 - 8y) (2.15)
or
1-p-py>0

or

The final conditions on y are therefore

—L<y<1'ﬁ

1-p B

which are soluble provided
B<(1-p2.

This is equivalent to Eq. (2.1).

(2.16)
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3. SOME EXAMPLES
A. Example 1

We show how to use the above theorems to derive
the Yukawa or Coulomb interaction between N particles
exchanging virtual bosons. The particles are taken to
have Hamiltonians H"= - (1/2m,)A, on the Hilbert
spaces A" = L*(IR3) and we put

N
H= 2 8

ral
on the Hilbert space tensor product // of the /7. If u is

a C~ function of compact support on R® we let M denote
the bounded operator

(M) )= puly - 20 (v)

on L*(IR?%), this being considered as a regularization of
the &-function at x. We then define the bounded operators
6_on A bx
éx: rz:l‘/ M;
If Q;, P]. are the canonical position and momentum
operators on L?*(IR?) with domains equal to the Schwartz

space §, then for any 6-tuple o =(a,,...,a,) of non-
negative integers we put

X o= Q) QT2Q P PP
and then define H?Q/ﬁ for 0 <i<3 to be the completion
of § for the norm

i, = 2

lal<15-5%

X, o,

where |a|=35,a, We define #,C# to be the Banach
space projective tensor product

H =& Mo EHY
The truth of (A1) is a consequence of the trivial in-
equality

1P+ PE+PYY|l< 25 Xl

w@l=

Using the commutation relations
[P, M =M, [@,M]=0
to commute the operator M_ in X, M_¢ to the left-hand
side, and then applying the estimate
1M (1 + @2 +Q2+ @3 < c(l +x7)7?
one obtains

x5, 0l <c(l+®)E 25

Bi<lal+s

HX gl
This implies

16, 41,4 < c(1 + )29
and hence (A3).

We define 7 to be the boson Fock space with single
particle space L2(R?). F is defined to be the free
Hamiltonian on 7 which acts on the single particle
space according to

(Fy)(R) = (m® + 21 2p(k),
where »: = 0.

If i=0,1,2, we define 7, to be the sum of the m-
particle subspaces of 7 such that 0<m <{, with the
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usual Hilbert space norm, and observe that (A2) is
obviously satisfied.

The field operators ¢, on 7 are defined by
@,= Q) 2[g*(f) +alf)],
where f, is defined as a function on momentum space by
£(R) = fk)eri

and the infrared and ultraviolet behaviors of f are
controlled by the assumptions that fe L*(R®) and

| fR) | < clk|™/? (3.1)

for all £ ¢ IR?, Conditions (A4) and (A5) are immediate
consequences of the action of the creation and annihila~
tion operators on Fock space. Because the Hamiltonian
F is free, (A6) and (AT) are immediate consequences
of the following lemma; the presence of P, in (A7) is
essential to ensure that only the creation parts of ¢,
and @, have any effect.

Lemma 3.1: If fc L*(R®) satisfies Eq. (3.1) and
S € LA(IR®) is defined for ¢>0 and x ¢ R® by

&) =F(R) exp~ ix °f = t(m? + E2)1/2],
then for any  such that 0 < g<1 we have
7l < cpt™,
Pyoof: The case =0 follows from
1 fe I 1A

s0 we need only prove the other extreme case =1 and
interpolate,

1Sl JmB | i) [P et %

<) cte|teMa
-

=dnc2[” ye?trdy
0
:cll'2

We next compute the form of the operator K. If we
define

W<x —y)s < (pxF-l(Py>vac
:]ms(mz T 12)1/2 | flk) |2 expl - ilx — ) * k1A,

then our assumptions on f ensure that W is a bounded
continuous function of {x —y). If we remove the ultra-
violet cutoff by putting

f(k) == (}713 + ]\,2)-1/«1,

then W equals the Yukawa potential, or the Coulomb
potential if » =0. In terms of W the operator X is given
by Eq. (2.6), namely

N . i
K== 25 | o MIMSW(x = y)d*xdy.

r,8=1

(3.3)

The terms with » #s describe two-body potentials while
the terms with » =s are finite self-energy constants.
The validity of condition (B8) is an immediate conse-
quence of the boundedness of the operator K.

We do not verify (B9) but refer to Comment (i) before
Theorem (2.2).
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B. Example 2

In our second example we consider a more singular
interaction where the particle self-energy may be
described as a mass renormalization. In order to
simplify the treatment as far as possible we consider
a single particle with a first order derivative coupling
to a three component phonon field, We use the notation
of the last example as far as possible, simplified to
the case of one particle. The operators 5, are defined
for 1sr<3 by

61:: = PTMX + MIPT
and (Al) and (A3) are verified as before.

The boson field is represented by the Fock space 7
with single particle space L*(R®*)®IC?, with F being the
free Hamiltonian which acts on each single-particle
component according to

(F) (k)= |k |d(k).

The field operators ¢, are defined for x < IR® and
1<y<3by

o= @152 ar (7, ) +alf, )

where f,, lies in the 7th component of L%(R?)&L* but
is otherwise independent of » and satisfies the condi-
tions of Lemma 3.1. The interaction Hamiltonian is
defined by Eq. (2.2) with n=3. The verification of the
axioms is exactly as for the previous example, except
for (B8).

The verification of (B8) depends upon finding an
explicit expression for the operator K. Eq. (2.6) may
be rewritten as

2 Jmﬁ rx rz gp:chd(p'rz>va.c(l"?)Cd:S'Z
=- rZ} Jm“ (P,M_+MP)P, M, +MP,)p(x-z)
Xd3x d3z,
where
p(u):fns [l 171 () |2 exp(=du + ) d%

is a continuous bounded function on R?® which, for
simplicity, we assume to be spherically symmetric.
Putting

(M) = (- ia ) (v = x)P(y)
we obtain
Tj (2P M, -—MT)(ZMP +M7) ply - 2)d*x dz.

Straightforward calculations show that for any two
C= functions 1! and u? of compact support on R®, one
has the operator identity

j‘BGMiMip(x—z)dsxd:’z
=/ 6ul(,\f)ptz(z)p(z—x)d3,xfd”z. 1

= J o BME) (= E) p(R) % . 1,

where ~ denotes the Fourier transform. Using the
spherical symmetry of u and p we obtain

K:—4(P2+P2+P2)_/ 3{u W plk) dk
—1j SRR RER) dk.
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The operator (H +K) is therefore of the form

1
= - —————— A
H+K c e
with a renormalized mass m*. The validity of (B8) is
immediate from the fact that #, contains §.

C. Variations of the models

We mention some variations of the above models.
Since there is no necessity for a phonon field in the
limit of small lattice spacing to be rotationally invariant
we should not have supposed this above. The modifica-
tions are straightforward and lead to a tensor renor-
malized mass.

There is no difficulty in dealing with higher order
derivative couplings along the lines described above.
The renormalized particle Hamiltonian then involves
powers of the Laplacian in the spherically symmetric
case.

The condition (3. 1) on the infrared behavior of f is
sufficient to deal with a variety of particle-field inter-
actions (Ref. 9, p. 133; Ref. 10, p. 43). Because of the
unclear status of the restrictions on 5 in Eq. (2.1) we
are not sure how far (3.1) may be weakened. However
the assumption

e <l |

would correspond to the value =3 in Eqs. (2.1) and
(3.2), and is not sufficient for the convergence of the
integral in Eq. (3.3).

We mention that by developing the techniques above
it is possible to examine electron-atom interactions in
the low density limit, for a fixed coupling constant, !
In that case the effective Hamiltonian of the atoms
involves multibody potentials of all orders.

For the examples of this section it is also possible
to derive the effective interaction by the use of dressing
transformations e as in Ref. 12, Indeed in the proof
of Theorem 2.2, ¥, is essentially the sum of the terms
of order <2 in the expansion of eT*W  in powers of A.

4. BOSON EMISSION

In the above analysis nothing corresponding to boson
emission appeared. This is rather puzzling in view
of the many rigorous calculations obtaining such an
effect from asymptotic calculations to the second order
in the coupling constant. ?**'* In this section we clarify
the situation by yet another study of the Wigner-Weiss-~
kopf atom. We assume the reader is familiar with this
model, described in Refs, 1, 14, and 15 for example.

One starts with a Hilbert space // =L &/, where
represents the particle and HO the quantum field. The
Hamiltonian H, is defined for x > 0 by the matrix

2w A

AT 4 4.1)
M H

H

where wc R, fe HO, and H= 0 is a self-adjoint operator
on//,. We put 2= (}) and study the asymptotic form as
A0 of (exp(~iH, )R, ). If \%w is replaced by w in

H,, then it is shown in Refs. 1,2, and 13 that under
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suitable conditions
lim exp(iwr2¢) {exp(~ iHA21)R, Q) = exp(- (a + ib)¢]
A=0
(4.2)

for all £= 0, where b IR and ¢ > 0, However in order

to relate the Wigner —Weisskopf atom to the calculations
of our previous sections we must take H, as in Eq.
(4.1). Tt then turns out that Eq, (4,2) is still valid but
with a=0, so that for times 0 <t < O(x"? there is no
decay. We shall show that there is still exponential
decay in this case but that it is a higher order pheno-
menon. For related results concerning the higher order
behavior of the Wigner —Weisskopf atom we refer the
reader to Ref. 12,

It turns out that the critical quantity for our analysis
is the form near z=0 of the function

1(z) = (z + H)'f, f) (4.3)

defined and analytic for largz| <g, This behavior deter-
mines the form of the infrared singularity of the quantum
field. We assume that for some constants w,>90, ¢> 0
and 0< <1
u(z):wo—cz“+o(Jz]B) (4.4)

as |z|~—~0 with |argz|<7. We make some comments
to motivate this condition.

(1) If p{dk) is the measure on [0, such that
((H+2)Y, ) =] (k+2) pldk),

0
then the existence of a condition such as (4.4) depends
only on the form of p near the origin. For we can al-
ways write

ulz)= J:(k + 2 pldk) + f.7 (k +2) p(dk)
and the second integral is analytic in the region
{lzl<e}.
(it) If #, =LA (R®), (H)(k) = |k |y(k) for all g/, and
fl)= [k |25 Ya + e P
for some a> 0 and 0<3<1, then by Ref. 10, p. 215,

(@) =4r | "k + )z + k) Mk

1 ald® 2% praft

Th-z {(a —z)sinnB simr,fﬁ}

which satisfies (4.4).

(iii) There are analogous conditions for = 1 for which
more complicated versions of the following analysis
may be carried out.

1t is easy to show that the Hamiltonian H, has a nega-
tive energy eigenvalue if and only if w < w,. In mathe-
matical terms w =w, is a critical threshold for the
bound state to dissolve into the continuum; physically
it is the threshold for the emission of bosons in an
analogous fashion to Cerenkov radiation (see Ref. 9,

p. 136 and Ref. 10, p. 46). From now on we assume
that w > w,.
Lemma 4.1: If Imz> 0, then
%%1 A ((H, —ER+>‘°‘z)“Q, Q) =(z+a+1b)", (4.5)
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where

a=2+24, E, =320 - w,)
(4.6)
Pyoof: Applying Eq. (4.4) to the standard formula

a+tib=c |w-w,|%"s,

{(H, +2)1Q,Q) 1 =220 + 2 = A%u(z),
we obtain

{xe((H, -E, +»*2)Q, Q) }"

(4.7)

=»"*{r\?w ~E, +1%
- 2[wy - A= E, +2%2)° +o( |E, - 1%z|®)]}
=z + 2% { - 2w —wg) + A2 2}E -+ o(p"28)
=z+{- (w—wo)+0i}5+o(1)
=z+c |w-w,|%e"+0(1)
as required.

Theovem 4.2: If w> w, and Eq. (4.4) is satisfied,
then

(4. 8)
for all t=> 0, where E,, o, a, b are defined by Eq. (4.6).

l)‘irgl exp{iE\1"%F) (exp(— iH\"%) Q, Q) = g-iot bt

Proof: Defining
K,=\®(H,-E)
Eq. (4.5) may be rewritten in the form
lil‘gl (K, +2)7Q,Q)=(z+a+ib)".

It is a consequence of Ref, 17 or of Fourier analysis
that

lim (exp(—iK,t) Q, Q) = exp(—iat - b|t])

for all f€ R, and this implies Eq. (4. 8).
In less precise terms Eq. (4. 8) states that
(exp(-iH,1) Q, Q) ~ exp{- ix*(w - wylt
~iar%f - bA%t}

as A—0 for 0 <f<O(x"®). Thus the bound state is
unstable and decays at the rate 2bA%. To obtain the
decay rate we needed to work to the order « in the
coupling constant; we see that ¢ > 2 and « is not neces-
sarily an integer. The occurrence of such noninteger
powers of 1 is a commonplace of higher order analysis
and is frequently associated with nonexponential decay.’

A glance at Eq. (4.5) suggests that the exponential
decay is associated with a pole on the unphysical sheet
of the resolvent near the point

z,= w — wy) +a%(a +ib).

As X — 0 this point converges to the origin, where the
resolvent has an essential singularity so that an ap-
plication of the methods of Refs. 17—19 would not be
straightforward. In our approach, however, we needed
estimates only on the matrix elements of the resclvent
in the physical sheet. We did not assume the existence
of boundary values on the real axis as in Ref. 20 let
alone the existence of an analytic continuation to the
unphysical sheet.
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Microscopic theory of superfluid Fermi systems. l. Binary

expansion
L. E. Reichl

Center for Statistical Mechanics, The University of Texas, Austin, Texas 78712

This. is the first of two papers in which the binary expansion is used to study the properties of hard core
fermi systems with broken gauge symmetry. In this paper, which is primarily formal, symmetry-breaking
source ‘tem'ls are introduced into the generating function for thermodynamic quantities, and an exact
expression is obtained for the generating function in terms of single-particle and two-particle sources and
the reaction matrices for the two-body problem. In a subsequent paper, the theory is applied to a dilute

hard sphere fluid.

. INTRODUCTION

At the present time, a discontinuity exists between
the theory of classical fluids and the theory of degener-
ate quantum fluids, It is our aim in this and a subse-
quent paper to try to bridge the gap,

The theory of classical fluids is largely based oun the
use of binary expansions (expansions in terms of exact
two body processes). For example, for equilibrium
systems, the Ursell—Mayer expansion is used to cal-
culate virial coefficients and provides an important tool
for determining the form of the interparticle potential
in real gases. ! In nonequilibrium systems, binary
expansions have been used to show that the current—
correlation functions for moderately dense gases ex-
hibit long time tails.? The importance of binary expan-
sions is that they provide a theory of many-body sys-
tems in which the integrity of the basic two-body pro-
cesses is preserved,

On the other hand, the theory of degenerate quantum
fluids has been based largely on the use of perturbation
expansions, i.e., quantum field theory, While quantum
field theory has led to huge advances in our understand-
ing of real degenerate quantum fluids, it can only be
considered as a phenomenological theory for fluids in
which the particles have hard cores or can form bound
states, In quantum field theory, the integrity of the
basic two-body processes is completely lost,

The binary expansion has been used to study degener-
ate quantum fluids but has had a varied history. It was
first studied by Lee and Yang?® for the case of normal
Fermi fluids and for boson fluids with broken gauge
symmetry. While Lee and Yang never introduced a
systematic method for dealing with self-energy effects
(the proper treatment of self-energy terms is of fun-
damental importance in a symmetry broken fluid be-
cause they determine the form of the gap equation),
they did introduce the so-called x-ensemble as a means
of summing terms in the binary exXpansion for boson
fluids below the critical temperature, The original work
of Lee and Yang was later extended by Mohling,4 who
was able to resum self-energy effects in a consistent
manner by means of his A-transformation. The binary
expansion has never yet been applied to a Fermi fluid
with broken gauge symmaetry,

In a recent series of papers, *~7 (referred to here as
RI, RI, and RIII) the author has reexamined the binary
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expansion for normal Fermi fluids and has shown that
there is an alternative method (to the A-transformation)
for treating self-energy effects in the binary expansion,
The method introduced in RI—RII agrees more in
spirit with the methods used in quantum field theory,

In the present series of papers, we shall use some of
the results of RI—RII to study the behavior of sym-
metry broken Fermi fluids using the binary expansion,

The breaking of gauge symmetry in a Fermi fluid
appears in the form of off-diagonal long-range order
(ODLRO)® in the reduced two-body density matrices, In
quantum field theory the standard method of treating
such systems is to introduce symmetry breaking source
terms into the density operator®!? and to resum self-
energy effects with the source terms present. At the
end of the calculation the source terms are set equal
to zero, and as a result one obtains a self-consistent
equation for the gap function.

In the present paper, we shall show that such methods
can also be used for the binary expansion and indeed
provide a simpler and more transparent means of
studying symmetry broken quantum fluids than the
x-ensemble introduced by Lee and Yang. Since most
properties of the binary expansion that we shall use
have been discussed at great length in RI—RIII we shall
continually refer to those papers and only discuss dif-
ferences introduced by the symmetry-breaking source
terms. The present paper will concentrate on formal
properties of the binary expansion in the presence of
symmetry-breaking sources. In a subsequent paper we
shall apply our results to the case of a low-density
hard-sphere Fermi fluid. This application will make the
differences between the binary expansion and quantum
field theory quite clear,

The ultimate purpose of this work, of course, is to
obtain a deeper understanding of the processes leading
to super fluidity in liquid He®, Both the perturbation
expansion (quantum field theory) and the binary expan-
sion are valid solutions to the differential equation for
the N-body density operator. It therefore is of interest
to see what they both have to say on the subject.

We shall begin in Sec. II, by writing a generating
function for various thermodynamic quantities in terms
of a density operator containing one- and two-body
source operators. The one-body source operators will
enable us to define Green’s functions and expectation
values; the two-body source operators will allow us to
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obtain an equation for the gap function below the critical
temperature, In Sec. III, the density operator will be
expanded in terms of binary operators and the source
operators, and a partial resummation of the density
operator will be performed. In Sec. IV, we explicitly
write the generating funetion in terms of antisymme-
trized matrix elements in the momentum representation
and introduce an expansion for it in terms of 0 dia-
grams, In Sec. V, we resum terms in the expression
for the generating function and write it in terms of a
new generating function which depends only on connected
0 diagrams and therefore is proportional to the volume,
We then go on to define all expectation values and the
grand potential in terms of connected diagrams, Final-
ly, in Sec, VI, we obtain an expression for the generat-
ing function in terms of source operators and reaction
matrices for two-body scattering processes in the fluid.

1l. GENERATING FUNCTION FOR THERMODYNAMIC
QUANTITIES

Expressions for the grand potential, various expecta~
tion values, and the finite temperature Green’s func-
tions for an equilibrium hard core Fermi fluid in which
gauge symmetry has been broken can be derived from a
single generating function,

We shall consider a system of spin-3 fermions with
magnetic moment 1, which interact with one another
via a spherically symmetric potential V(ir,,!) (r;; is
the relative position between particles ¢ and j). We
shall assume that V(iry;1) is short ranged and spin
independent with a large repulsive core for small values
of Iryy| and a weak attractive region for larger values
of Ir;;l. We shall not include the magnetic dipole inter-
action, although there would be no difficulty in doing so.

In order to include the possibility of broken gauge
symmetry in the Fermi fluid, we shall explicitly break
the gauge symmetry by including one-particle and two-
particle source terms in the density operator for the
system, The one-particle source terms will enable us
to obtain the finite temperature Green’s functions and
expectation values for the system. The two-particle
source terms will enable us to obtain the anomalous
Green’s functions. At the end of the caleulation we will
set the strength of the source terms equal to zero, In a
Fermi system, the broken symmetry appears as
ODLRO (off-diagonal long-range order) in the two body
reduced density, Thus, setting the single-particle
source strength to zero has no effect. However, the
two-particle source terms select out precisely those
quantities which exhibit ODLRO, I the system has a
spontaneously broken symmetry, the terms selected by
the two-body sources will not vanish when the source
strength goes to zero, We can use this fact to deter-
mine the temperature at which ODLRO sets in,

We can obtain the grand partition function, expecta-
tion values, and the temperature dependent Green’s
function from the following generating function:

o NN
L(B,g, vy, VII):IQ)TI'N@_B(HN+AHI*AH“), (1. 1)
where
HY=T" - gN+ V¥, (11, 2)
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AHY = SF@+ ¥ &) (IL 3)

and

AHY = SN + S¥), (IL. 4)

In Eq, (II.1), Try denotes a trace with respect to a
complete set of N-body states, 6= (K xT)!, where Ky

is Boltzmann’s constant and T is the absolute tempera-
ture, g is the chemical potential, v; is the single-par-
ticle source strength, and vy is the two-particle source
strength.

In Eq. (IL 2), TV is the kinetic energy operator

N 2
TN:E-[-—{-L

X om (I1. 5)

where Planck’s 721, K| is the wave.vector of the ith
particle, and m is the mass of a fermion; V¥ is the
interaction potential energy operator

N(N=1)/2

VN: ?) VH’

3 (IL. 6)
i< j=1

where Vj,;=V{ir;1).

In Eq, (I, 3), S¥*is an N-particle source which
emits single particles and S{™ is an N-particle sink
which absorbs single particles, They may be written

N
Sy v,h‘:{ ¢! am
where s} is a source for particle ¢ and s7 is a sink for
particle ¢, Similarly, in Eq. (I, 4) S* are N-particle
sources and sinks for pairs of particles, They may be
written
" NN=1)/2
Si®=vy s
1< 7=t

(11. 8)

where s, is a source for pair #j and s}’ is a sink for
pair 7j. In Sec, III, we explain how these source opera-
tors are to be used,

Expectation values of ordinary one- and two-body
operators

N
0f'=220; (I 9)
and
. N(N=1)/2
05 = 0 1
P i OV (1. 10

(these can include the source operators themselves) are
defined

e N N N
_ 1 D -V aut s anippN
{019y = 1lim . K_,«Tr,,e +alp+ Al 01(2,>

VIsVIiI~ Nz{

- -1
X(E TrNe'B‘”N* anls AH{’I)) ]

Nel

(I1. 11)

. LADDER DIAGRAMS

In order to evaluate the trace in Eqs. (II. 1) and
(IL. }1}1), i}g is g:lonv%nient to study the quantity
@8y g 87+ AHT AHTD which may be written

N N, agl, apV < A
eBHy g BHY AT AHTD W¥(8, 0) +”>:‘{(_ 1)"f:d7\1fo 1d)\z oo
X ’*n-ld N N
S A, WY B[ AHY (1)
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+ AH{VI(AZ)] WN()\p xz)[AHIIV()\z)

+ A ()] X - - x[AHF ()
+AHY (AW (A, 0), (. 1)
where
Hy=T"-g", (. 2)
AH{V(ID()‘):ewévAHfl(n)e-wg? (111, 3)
and
WY (, hg)= o o~ R H G rHY (. 4)

The operator W¥(x, %) can be expanded either in a
perturbation expansion or a binary expansion, If we
expand it in a perturbation expansion, then the proce-
dure which we shall introduce in subsequent sections
would enable us to reproduce all the results of field
theory. However, by expanding in a perturbation expan-
sion, we destroy the integrity of the basic scattering
processes in the fluid. If we expand W¥(%, %)) in a binary
expansion, we can obtain expressions for thermodynamic
quantities in terms of the exact solution of the two-body
problem and, in the classical limit, we can recover the
Ursell—Mayer expansion,

In this paper, we wish to write the thermodynamic
properties of a symmetry broken Fermi fluid in terms
of solutions to the two-body problem, and therefore we
will expand W¥(x, 3;), wherever it appears, in terms
of the following binary expansion:

N NN=1) /202

W) =1+ % dr R, (0 X)) MY (A, 0),

uel X
(ITL. 5)
where

N(N-1) /2™

MYGG =1+ 25 dxg Ry (Mg, ) MY (0gy 10).
vip=1 Ag

(111, 6)
The binary operator R, (x;, A;) depends on the pair of
particles u and is defined

3
Ru(x,,x,)z—a—g W (xy, 2)), (I, 7)

where W* is defined in Eq, (II1. 4) and depends on the
pair of particles p. The binary operator obeys the
identity

R, (g, Ny) :[1+j:23 ds R, (Ag, 8) R, (5, Ny) (I1. 8)

(cf, RI for more discussion),
It is useful to express Eq, (III 1) geometrically:

N, any _s (all different Qth order
! ~o:0 N-particle ladder diagrams).

Q=0
(11, 9)

ITPTIVAIN

To construct a @th order N-particle ladder diagram,
first draw N vertical lines and label them from left to
right from 1 to N, At the top draw a horizontal line
labeled B8 and below it draw @ horizontal lines labeled
from 2y to Aq from top to bottom. Ladder diagrams are
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completed by inserting X’s into boxes and triangular
one- and two-particle source vertices on horizontal
lines according to the rules in Appendix A,

Some examples of four-particle ladder diagrams are
given in Fig. 1, Algebraic expressions for the diagrams
in Fig. 1 are

8 A q A9 Ag Ay -
Vrl/nfo Dy g f, —’17\3f0 Angfy s Ry (8, 2g) S34(%)
XRZS()\% A3) S§(>\4) R34(7\49 7\5)1

8 A 2 A A A N -
— Vivn |, g [t dr |, 2d>\3f03d>\4f04d>\5j0 5 dng S{(N) S3(Ag)

Fig, 1(a)

X Ry3(Rg, Ag) Ryg (A3, Ag) Rag(Agy X5) ST(N). Fig. 1(b)

At this point it is possible to write Eq. (IIL. 1) in
terms of a cluster expansion (cf. RI, Sec. II) by sum-
ming large classes of unconnected ladder diagrams. We
would then obtain an expression for Eq, (III. 1) in terms
of a sum of products of connected ladder diagrams., If
no source terms were present, this would be a useful
way to proceed because matrix elements of connected
ladder diagrams would then be proportional to the
volume and we would have located all the volume depen-
dence of our generating function. However, the source
terms give rise to additional volume dependence in the
connected ladder diagrams, Therefore, we shall work
directly with the ladder diagrams themselves.,

The ladder diagrams can be simplified if we make use
of Eq. (III, 8) to sum large classes of terms which con-
tain disjoint internal chains of crosses (cf. RI, Sec. II
and RI, Appendix A). We then can write Eq. (III. 9) as
follows:

[
oBHY omBH s anfsauip

_§§ (all different @th order N-particle
— 4
220

contracted ladder diagrams), (I11. 10)

Contracted ladder diagrams are drawn and evaluated
in the same way as ladder diagrams except that Rule
(A.1) of the Appendix is changed to read

(IT1, i) One and only one cross can occur between any
two horizontal lines. The upper end of each cross must
either rest on the line x=p3 or must connect to a higher
cross or triangle.

We can now use Eq. (IIL. 10) to evaluate the trace in
Eq. (IL.1).

ta 8
£-t--1--12As e TS
S - X PN, oL A,
b el ke Ag ube r-?\s
------Vi—%q ---{— ﬁq
L, L
(a)

L2,
(b)
FIG, 1. Four-particle ladder diagrams,.
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IV. GENERATING FUNCTION IN THE MOMENTUM
REPRESENTATION

Since we are dealing with a system of identical
fermions, we will evialuate the trace in Eq. (II. 1) with
respect to a complete set of N-particle antisymmetrized
momentum and spin eigenstates of HY which we denote

|K19 RN KN>(a)::E(€)le1, coos Kids 1v.1)
4

where 7, is the sum of all permutations of quantities
K,;, and e=-1 (we write ¢ rather than ~ 1 because it
allows us to keep track of terms which result from
exchange effects). As usual, each particle is assigned
a definite position in the ket, the quantity K; which
occurs in the jth position gives the momentum and spin
of the particle; i.e., K,=(K,,7;). The ket |Ky, ...,
K,)® is not normalized but must be multiplied by a
factor (N1)/2, We can only use the antisymmetrized
states to obtain matrix elements of operators which are
symmetric under interchange of particles,

The generating function can now be written

® . N
L(B’g: Vi, vII) :7: <#\E-|> Z; €Xp <_ BE(JJ{><K1, 000y KN‘
JAURS Ki' f=1

Nz0 coor Ky
weBHY p-siNeanleanly Ky, ooey K@,
Iv.2)
where
w;=K%/2m - g, (Iv.3)

With the definition of e8#¢ e=8¢#"s a1+ 81{D given in
Eq. (ITI.10), the method of evaluation of the matrix
element in Eq, (IV. 2) is straightforward and has been
discussed elsewhere (cf. RI, for example), However,
the source terms introduce some new features which
we shall discuss ir some detail,

The source termas can be thought of as “half-poten-
tials,” They give rise to vertices in which particles can
only enter or only leave., One way to evaluate Eq.

(IV. 2) would be to treat s§*’ and 5%’ as normal poten-
tials and at the end of the calculation, eliminate all
contributions from lines which leave s;™ or s{;’ and all
contributions from lines which enter s{* or s{;’, since
these would be ccntributions from nonexistent particles,
The main difficulty in evaluating Eq. (IV, 2) is in count-
ing terms correcitly, We can treat the sources as “half-
potentials” if we introduce the following devices, We
define the sources in the momentum representation as

SIEV:?S&,,HOJ(KJ);, (Iv. 4)
a
si=v1 2058, (1 Ka)(0, )i, Iv.5)
a
S =Vu KZ‘;( Sk iy ( 10,05)(K K| )i, 1v.6)
afy
and
Sy = Vi 2 Siym (1 KaKaX0,0, iy av.m)

The states 10,0,,) are introduced for counting purposes
and are defined to satisfy the relation

(KK, l 0,0,) =€(K,yK, l 0,0,)
= (K| 0,)(K, | 0,) = (K, | 0¢K1 | 0,). (V. 8)

With the above definitions of the source terms, the
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procedure for writing the generating function in terms
of matrix elements of two-body and one-body operators
is as follows: We first use Eq, (III, 10) to write

L(B,g, v, V;p) in terms of matrix elements of the binary
operators, R, (A, ), and the source operators, We
then use Eq. (IV. 8) to combine terms, Af the very end
of the calculation we set (K;|0,) =(0,|K;) =08y, and
sum over K;, Terms which have matrix elements of
binary operators (KK, |R,{\;, \,)| K3K,) or source terms
Sk1» S¢4, &, With one or more momenta equal to zero are
then set equal to zero since they represent processes
involving nonexistent particles,

As a result of the above procedure, we are lead to the
following expression for the generating function:

L(3,g, v, Vi) =2 (all different (Iv.9)
0 diagrams).
A 0 diagram is a collection of R-vertices, s{*’-ver-

tices, s¥-vertices, solid lines, and wavy lines.
R-vertices have two lines entering and two lines leaving,
si-vertices have one line entering, si-vertices have
one line leaving, si;-vertices have two lines entering,
Sii-vertices have two lines leaving. Wavy lines can only
be directed to the left but solid lines can be directed to
the left or right. No wavy line double bonds can connect
two R-vertices, No lines in the diagram can be broken,
Two 0 diagrams differ if they have different topological
structure or if they have the same topological structure
but the lines are of different types or directions,

Algebraic expressions can be associated with the 0
diagrams according to the rules in Appendix B,

Some examples of 0 diagrams are given in Fig, 2,
Algebraic expressions for the diagrams in Fig, 2
are

1 3
—[Zeln(l—ee'ﬂ“’i)]

1
3!k

B8
=13 drgdre 80— 2) s7d &, 0 ) st lEL K2
2["#‘200 q 2(1 2) IIK1K2)‘IIIO 6("2:’

88
xet 5 J’J AN o o dA50(0= Xg) O(h = Ag)0(2g = A5)
Kissoo K7 )y Jo

Fig.2(a)

X 0(xg = Xs5) evs) (€vy) (eve) R(? é):i R<Z $>:; RG g):

K ={0
SR
LY L7

Fig. 2(b)

<&

Q Q
Q

(a) (b) (c)
FIG, 2, 0 diagrams.
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and
3
37 Klef‘/‘BdeM 82 = Ag) lewy)( €V2)3u< > SII<K1 m) 2]

We now can sum the 0 diagrams, Fig. 2(c)

V. GENERATING FUNCTION IN TERMS OF
CONNECTED DIAGRAMS

In Section IV, we wrote the generating function
L{8,g, vy, V) in terms of 0 diagrams which depend on
various powers of the volume. However, the 0 dia-
grams can be summed and the generating function can
be written as an exponential of a function, B(B, g, vy, Vy;)
which depends only on connected 0 diagrams and is
proportional to the volume:

L(ng, Vo VII):eB(B.g'UI.UH)Q (V. 1)
where
BB, g, vy, Vi) =0 (all different connected (V. 2)
359 VI V11

0 diagrams),

Connected 0 diagrams are drawn in the same way as
0 diagrams except that all vertices must be completely
interconnected by solid and wavy lines, Rules (B, 1)—
(B. 10) may be used to associate algebraic expressions
with them.

In terms of the generating function,
the grand potential is defined

B(B’g, Vi, VII),

1
Q(BQ-g):__B L;TOB(B,g; Vs VII)o (Vu 3)

VIt o

Expectation values of arbitrary one- and two-body
operators 0, are defined

6*L (8,8, V1, Vir)

(0g) =B Lim 1w 5% (K 04| Ky) —t 1 (V.4)
V;I 0 ).Z-o K Kp 4 8s1(b)bst(a)
and
n 1D @
(0y) = e*® .I;;-'-no ;2~x,,~0 5 Ky KpK Ky <KaKblolech>
VITT 0 g~ age0*
54L (B: g, V[’ VII’) (V 5)

X 51(@)651(0)65;()053(d) ©

Expectation values of one- and two-body source opera-
tors SY® and S;*’ are

TP VI? v 1
(%) = e ,',}.“‘00 ) ZS(*) Béi 1(@) = v.6)
L ¢ St
and
(sB) =80 lim  Lim Y @ SL(B,g, v, VD) V. 7)

v+ %0 gry Kaks  psiE(a, b)

vir~0

In Egs, (V.4)—(V.7) we have used the notation

Si(a)ES{(é‘f*) : s:(a)zs:(i) , Sh(agb)zsfr@“ é"ﬁ
Ag A

and S (a, b) = SII<K OK) . The variational derivatives
b/x
act on the source opera‘éors in the expression for
L{Bgvyvy). They are defined

6510) _ (1) 5

bst(a) v (V. 8)

7\] - 7\:1) 61{,, K,
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0s1(j
bs%(a)

—

=0, (v.9)

0s1i(t,7) _ (=1)
6st(a,b) v 50

L - (V. 10)

and

SBs1i(E,7)

O5%la, b) V.10

The effect of each variational derivative is to remove a
source vertex from L(Bgv,v(;) and attach its line to a
vertex representing 0{(;, or S{ ) on the extreme right.
In Egs. (V.4) the temperature of the sink S;7(b) must be
kept larger than the temperature of the source Sj(a) as
they are both set equal to zero to ensure that the
attached vertex appears to the right and not the left,
The same is true in Eq. (V.5).

If we substitute Eq. (V.1) into Eqs. (V.4)—(V,7) and
use Eq. (V.3), we can obtain an expression for the
expectation values which is proportional to B(8g, v, vy).
Since ODLRO does not occur for single-particle objects
in a Fermi fluid, any terms containing single-particle
sources after the variational derivatives are taken will
be identically zero, That is,

Iim 6B
“1=0 Bt (a)

=0

since single-particle sources occur in pairs.

Thus, we obtain the following expressions for the
various expectation values.

53]
(0 =410 ii’o’ <K”|01| 63*(a)5-5_'(7) ’ v.12)
VIO a e I be
1
0 =ltm, Lim = T (KK, |0, K K@
<2> v~ 0 A =ap-0 2KaKchKd< a b| Zl ch'>

l'l’l"'0 Ac.xd..o-v

y 8B N 8B 5°B
[Gs;(a)Gs;(b)és;(c)és;(d) dst(b)bsi(c) dst(a)dsi(d)

(V.13)
. 5B 5B 8213 3R
dst(a)6si(c) 6s3(b)dsi(d)  osf(c)lisi(d) bst(a)dsi(h) |’
(sfy=0, (V.14)
<S (&) _llm 1im (g) 5B (V 15)
I vy '00 A= 0 K—féb KgKp 5311 ((l b) o
vir~

VI. GENERATING FUNCTION IN TERMS OF
REACTION MATRICES

In writing our expressions for thermodynamic prop-
erties of superfluid He®, we wish to make as close a
contact to the structure of quantum field theory as pos-
sible, since our present understanding of the properties
of superfluid He® is based on field theoretic methods.
In RI, we wrote expressions for the binary operators
in terms of the exact solution to the two- body problem,
We found there that the binary operator splits into two
parts, one part which depends on a single temperature
and another part which depends on two temperatures,
as does the binary operator. Because of this splitting,
we were able to isolate terms in the binary expansion
to which we can apply techniques for resummation
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introduced by Matsubara. These terms may be thought
to give the most coherent contributions to the ther-
modynamic properties of superfluid He®,

In RI, Eq. (VL 13) we obtained the following expres-
sion for the binary operator in terms of reaction
matrices

A9
R‘é i)f‘[czaqz)o K Iy A| Kp ) e M@t wamagmep

+ 1 }j Cz(l%e)ehi(wi* WYm W5 W) e AW gty = w5 Wg)

5K¢

1
- —— K K, )8}
P<w5+w6—w1—w2>°< o | A | K5iGe) §

X o(K5Kg | A| KK, 6"’]- (VL.1)
In Eq. (VI 1), C(K,) is a normalization constant, Kj,
is the relative momentum

K= 3K - Kp), oK A|KoK, )™
is the reaction matrix ind P denotes principal part., We
shall represent the first and second terms on the right
hand side of Eq. (VI.1) by separate vertices, as was

done in RI, We then obtain the following expression for
the generating function F(3, g, vy, v11):

B(8,g, V1, V11) =2 (all different (V1. 2)

A-matrix 0 diagrams)

As in RI, A-matrix 0 diagrams are obtained from
connected 0 diagrams by splitting the binary operators
into two parts; and by expanding the temperature Heavi-
side functions in the connected 0 diagrams until we
obtain all diagrams which cannot be deformed into one
another without changing the direction of at least one
solid line, Furthermore, we shall add together all dia-
grams which have the same topological structure but
differ only in the number of left directed lines which are
solid or wavy (cf. RIII), We can then define the A-
matrix 0 diagrams as follows,

An A-matrix 0 diagram is a collection of A-vertices,
D-vertices, and s{};,-vertices, ordered with respect
to one another from left to right. All vertices are com-
pletely connected by directed solid and wavy lines., A-
vertices and D-vertices each have two lines leaving
and two lines entering. The sj-vertex has one line
leaving and the si-vertex has one line entering., The
si-vertex has two lines entering and the si;-vertex
has two lines leaving, All lines are solid except for
left directed internal lines of the D-vertices or left
directed lines which begin and end on vertices with the
same temperature labels, Left directed solid line
double bonds are allowed (we explicitly subtract off a
wavy line double bond each time one occurs between
A-vertices, D-vertices, or A- and D-vertices). (D-
vertices with two solid lines leaving must be placed so
that both solid lines are directed to the right,) Two
A-matrix 0 diagrams differ if they different topological
structure, or if they have the same topological structure
but the lines are of different types or directions, or the
D-vertices have different temperature labeling.

Algebraic expressions can be associated to the A-
matrix 0 diagrams according to the rules in Appendix
C.
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Some examples of A-matrix 0 diagrams are given in
Fig, 3, Algebraic expressions for the diagrams in
Fig. 4 are

%)kiE Kef_-::- fdkr < dXz0(B = 2B~ Ng)0(hy — X3) 6 (X) 6 (3)

<

Ky K\ _fo o
X (evy)(evp) (1 +evg)(1 +evg) Df kg |STkky Ky
K5 Kg

xs;x<1{5 K6>e(B-A2) (w1 wg) g (BA1) (wgsug) o= (A= Ag) (wivag)
0 0

Fig. 3(a)

A
e’ K1°Z°>K12<§>J’_;,. J'dxi- < edn8(B= 2)0(A = Ag)0(Ag — Xg)

X 0(hg = Xg)0(hg = A7) 0(hg — N5)6(B— A)0(Ag— A5)0(Ng)
X O(hg = Ag)O(h5 — A)0(Ny) levy) (V) (evg) (evs)
X(1+ev )l +evg(l +evg)(l +evy)(l +evy)

X7 Ky

- K, Kg K
XS{(ff‘)A(f(z §3>A<§4 ;5>Sn<g( ‘L)Sf<06>f4 (K” K">D Kyy Kip
1 %4 [ 8“9 5 %10 Ky Ky

N (Rq=rg)wy e (Az-h-[) (w2+w3)e-().2-l3)w4 e-(14-).5) (wg+wg)

X g~Rgrglug g Rghsl W5 o= (gThglwg o =(gTArdwyyswyy) - Fig, 3(b)

The expression we have obtained for the generating
function, B(8,£, vy, V11), in terms of A-matrix 0 diagrams
is exact, We therefore have been able to express all
thermodynamic quantities in terms of the reaction
matrix for two-body scattering processes in the fluid,
As afirst step in obtaining a useful theory of symmetry
broken Fermi fluids, we must resum self-energy ef-
fects. In RIII, we showed that it is possible to do so
using techniques similar to those used in quantum field
theory. However, the method used in RII is different
from the Matsubara method of temperature dependent
field theory in that we introduce a Laplace transforma-
tion of temperature dependent variables rather than a
Fourier expansion, as is done in field theory. The
Matsubara method makes use of the fact that all prop-
agators and vertices in temperature dependent field
theory are periodic functions of temperature. In the
binary expansion, this is no longer true, The appear-
ance of D-vertices and exclusion of wavy line double
bonds destroy the periodicity (particle—hole symmetry)
of B(8,g, vy, Vi),

(b)
FIG. 3. A-matrix 0 diagrams,
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However, there is one case in which the binary ex-
pansion and quantum field theory become almost iden-
tical in structure, and that is when we can approximate
all reaction matrices by their values for forward
scattering, Then the D-vertices give no contribution and
the A-matrix 0 diagrams, except for a small subclass
of terms, become periodic functions of temperature.

In a subsequent paper, we shall apply our theory to
the case of a low-density hard-sphere Fermi fluid in the
forward scattering approximation,

APPENDIX A: RULES FOR LADDER DIAGRAMS

(A,1) One and only one cross can occur between any
two horizontal lines. Crosses must connect neighboring
horizontal lines.

(A.2) Two crosses cannot have two points in common,

i. e., the structure is forbidden,

(A. 3) Source and sink vertices are represented by
inverted and upright triangles, respectively. Only one
triangle can occur on any horizontal line.

(A.4) The bottom points of a cross may not rest on
the same horizontal line to which the base of a triangle
is attached.

(A.5) If N, is the number of triangles and V, is the
number of crosses, then N, + N, =@,

(A, 6) With each cross associate a factor

1 J

A
=Ry (g, 1),
Az

where ¢ and j are particle labels and x4 and X; are
temperature labels,

(A, 7) With the one-particle source vertices, asso-
ciate factors

e AK
=—-v;S7(n)
- Ag
and
A
L A
=— 1,5
- Mg vS;(hy),

(A, 8) With the two-particle source vertices, associate
factors

=-S5 ()

and
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Ax
A =-vuSi(y).

(A. 9) Order the algebraic expressions for the cross
and triangle vertices from left to right in the same
order that they appear when reading the ladder diagram
from top to bottom.

(A, 10) Integrate over each temperature from zero to
the next higher temperature (the temperature of the
horizontal line immediately above).

APPENDIX B: RULES FOR 0 DIAGRAMS

(B.1) Label all lines from 1 to #, where n is the
number of lines and assign to the jth line a momentum
and spin K; = (K;, ;).

(B. 2) Label the R-vertices, and sy,~vertices from
left to r1ght from Ay to Ay, where @ is the number of
R- and s{&,-vertices,

(B.3) To each R-vertex, associate factors

Al \
K1 Kz 2

:R K3 X4 6()\3"‘ ).2)9()\2 - )\1)

M

et

if A3 appears to the left of 2,

K Ko\ 2
K3 K4>
‘\<
1 3,
K KI .~
> A K3 K4> (8= 2)
A A

s

In the above vertices, the dotted lines may be solid or
wavy and

Ag i
<K1 Kp\ © = (KK, | R, Ay) | BgKp @
K3 Ky \

6(B= 2g)0(xg = 2y)

e

and

The temperatures X, and 13 are the temperatures of the
vertices to which the wavy lines attach,

(B.4) With the s}-vertices, associate factors

o :s;(sﬁ)Me(s— Ay

N

Y

= si(f1), 6021,
o I M
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i

O =57 (g,), 6(B= 1)
Ay

where
siF) = (- 1)vsg ettt
i), = - Vs

and
SI [}(1 ( 1)1/18;{16-)1“1"
The dotted line may be solid or wavy,

(B, 5) With the s{¥’-vertices, associate factors

K1 Kz

(B~ 1),
"1

—Sn

= 911 O(hg = A1),

1 [fz 9(}\2 =) (a3 =Ny),

o
S\Kz :5;1((;(1 9{2))‘1 0(B=-21y),

s A N
where

K{ K — A (w
3?:(01 02> = (= 1vyy g et @192
A

=f{0 0 ~(a) ,*in(w
SII<K1 K2> =(- I)VIISK Ka € 2 1o
3|
and

=-{a)
k1K =

Skyky TS Ky Ky
(B. 6) With each solid line connecting two vertices
associate a factor

— (o) = ECXD(= Bwy)
+1K1— V) =12 em

where
wy=K3}/2m - g,

(B.7) With each closed loop which does not pass
through any vertices, associate a factor

O\l =27eln(l- e 1)
|

(B. 8) Multiply by an overall factor e75* % (1/S), where
Ny is the number of si-vertices, and S is the symmetry
number of the diagram (S is the number of permutations
of labels on lines which leave the diagram topologically
unchanged), P, is defined as follows: Associate each
momentum in the Sy,-vertices with a momentum in the
Stan-vertices by locating the momentum from an
Stap-vertex in an R-vertex matrix element and follow-
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ing a chain of momenta through the R-vertex matrix
elements (reading from top to bottom) until the first
momentum index associated to an S qqy-vertex is
reached, These two momentum indices are “associat-
ed.” Do this for each momentum in the S; - vertices
until each is “associated” with a momentum from the
Stan-vertices. Py is then obtained by counting the num-
ber of permutations of bottom line momentum indices
with respect to top line indices in the R-vertex matrix
elements (this includes the number of permutations
needed to line up associated momenta).

(B. 8) Sum over all momenta and spins.

(B.10) Integrate over the temperature of each vertex
from 0 to B

In associating temperature Heaviside functions with
the vertices, as we have done in Rules (B, 3)—(B. 5),
we have summed over a large number of contracted X
diagrams,

APPENDIX C: RULES FOR A MATRIX 0 DIAGRAM

(C.1) Label each line from 1 to n, where n is the
number of lines, and associate to the jth line a momen-
tum and spin K; = (K;y,).

(C. 2) Label the vertices from left to right from A, to
Xg. (D-vertices require two temperature labels, One is
determined by its horizontal position; the other by the
type of lines that leave it and the temperature of the
vertices to which they attach, )

(C. 3) With each A-vertex associate a factor
1 3
3K4) (l)u

_A <K1 Kz) = - C2(Ky,)
4 Ky Ky

A

where the dotted lines may be wavy or solid.

(C.4) To each D-vertex assign temperature labels
according to the following conventions:

3

A7 A,

To each of the above D-vertices, assign a factor

k) &y
K5 KG ~—
K3 Ky

C (KSG) 0<K1K2(A lK I(F) 0! 0<K5K6 IA [K3K4> 5"

%P (o)
Wy + W — Wy — Wy

The factor 3 in Eq {(V1.1) is now contained in the sym-
metry number S™! of Rule (B. 8).
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(C.5) To each s{*’-vertex assign factors

1
~—0= s;(o"i) = (- Duis,
A

A
and 1
O+": S-I 0 = (— 1) VISI;"
A Ki/r 1
(C.8) To each s{¥-vertex assign factors
1
= 3?1(51 :2> = (D) viSk
2

A

and

- /Mo -
2 =s = (= 1) v(Sg. koo
A II<K1K2> 11K Ky
(C.7) With each left directed line, solid or wavy,
associate a factor
1
=40~ Ay) e” B2y
Az P
and with each right directed line associate a factor
1
.__)__. — 0()\2 _ }\1) eMamApay
A Ay

(C. 8) With each A- or sfi];,-vertex with no lines leav-
ing or entering on the left assign a factor 6(8- Xy),
where Ay is the temperature of the vertex. To each A-,
D-, or s{);,-vertex with no lines leaving or entering
on the right, assign a factor 8(x;), where X is the
temperature of the vertex,

(C. 9) With each right directed solid line associate
a factor

i
—r— =(ey)

and to each left directed solid line associate a factor

i
—— = (1+evy)
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(C.10) For each left directed solid line double bond
which connects two A-vertices, or an A-vertex to a
D-vertex, subtract a factor

1
@ = 0(h = Ag) "MW1 wp)
Mg A

(C.11) With the closed loop which does not pass
“hrough any vertices, associate a factor

O\ 1 :Z_fe In(l — ee™841),

For each closed loop which passes through a single
vertex assign a factor (evy).

(C‘,ﬂ12) Multiply the entire expression by a factor
eF5*¥7(1/S) as in Rule (B, 8), (Now the A-vertex and
D-vertex matrix elements in obtaining Py.)

(C.13) Sum over all momenta and spins. Integrate
over all temperatures from - « to «,
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Microscopic theory of superfluid Fermi systems. .
Application to low density hard sphere system

L. E. Reichl

Center for Statistical Mechanics, The University of Texas, Austin, Texas 78712

This is the second of two papers in which the binary expansion is used to study properties of hard core
Fermi systems with broken gauge symmetry. In this paper, we make contact with the phenomenology of
superfluid Fermi systems commonly used in field theory. This requires, however, that each scattering
event is approximated by its forward scattering value, an approximation which, at best is valid at very
low densities. Within this approximation we show that a hard sphere Fermi fluid can exhibit superfluidity.

. INTRODUCTION

In a previous paper,1 we derived an exact expression
for the generating function for thermodynamic proper-
ties of a symmetry broken Fermi fluid in terms of re-
action matrices for the two-body problem, In the pres-
ent paper, in order to illustrate use of the formalism,
we shall apply that theory to the case of a low density
hard sphere fermi fluid, Such a system, as has been
pointed out by Lazer and Fay,? can exhibit superfluidity
if exchange effects are taken into account because an
attractive interaction can exist between pairs of parti-
cles with total spin 1, This is now thought to be the
mechanism for superfluidity in liquid He?, ?

We shall assume that the dominant contribution to
each scattering event in the fluid comes from forward
scattering processes. Such an approximation is at best
valid only for a very low density gas.

In the forward scattering approximation, the A-matrix
0 diagrams of Ref. 1 simplify because all D-vertices
are then identically zero, The only troublesome terms
which remain are those involving double bonds, As we
have seen in Ref. 1 (cf. Ref. 1, Rule C.10), the binary
expansion excludes the possibility of having wavy line
double bonds. These correspond to processes in which a
pair of particles collides and then recollides without one
of the particles first having interacted with another
particle in the medium or having been exchanged with
another particle in the medium. Even though wavy line
double bonds are excluded, we can still have double
bonds which depend on one wavy line and one solid line
or on two solid lines since these involve exchange
effects (we are now using the terminology of Ref, 1,
Appendix B), However, as we shall see, at low density
these terms give no contribution to scattering processes
involving pairs of particles with total spin 1, and there-
fore have no effect on the possible superfluidity of the
hard sphere system, However, they can give a sizeable
repulsive contribution to scattering processes involving
particles with total spin 0. Since in the subsequent
sections, we are primarily interested in superfiuid
properties, we shall exclude all double bond structures,
When we do this, the remaining A-matrix 0 diagrams
exhibit particle—hole symmetry (are periodic functions
of temperature), and we can use Matsubara methods to
resum them (after the single-particle sources have been
set equal to zero, however).

We shall begin our discussion in Sec. II by writing
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the generating function B(B, g, v, vy;) in terms of the
subclass of 4 matrix 0 diagrams which contain no
D-vertices and no double bonds, We then can write
expressions for the Green’s functions and irreducible
self-energies for the system, In Sec, III, we use a
method due to Johansson? to obtain the gap equations
for the fluid, and in Sec. IV we obtain an expression
for the effective interaction of spin-1 particle pairs at
low density at the transition temperature, In Sec, V,
we make some concluding remarks.

Il. GENERATING FUNCTION AND GREEN’'S
FUNCTIONS

If we restrict ourselves to forward scattering pro-
cesses and if we are interested primarily in the super-
fluid properties of a hard core fermi fluid, we can
write the generating function as

B'(8,g, V1, V11) =27 (all different connected (1. 1)

0’ diagrams)

0’ diagrams a e A-matrix 0 diagrams (cf, Ref, 1) which
contain no D-vertices and no double bonds. (They are
similar to the type I diagrams of Ref, 5.) The vertices
in 0’ diagrams need have no particular left—right
ordering,

The first step in obtaining a meaningful theory is to
resum all self-energy structures, since they give rise
to terms polynomial in 8. It is convenient to introduce
the following propagator:

lim 628’
G (Kyy Ky Aoy o) =% B53(@)65(8)

= 5ta' kg Gravb(Ku: >\u - )\b)
=lim 57Tall different (1,1) diagrams)]

R4 &l
.2
and two anomalous propagators (IL. 2)

R _ 82B’ .
GOK,, Kydg i) = 5;“.’0 )05 () O, K,.ocia;b(Km Aa T Ap)
:5;'302[a11 different (2, 0) diagrams]

and (IL. 3)

6°R!
- . =1 _ -
Gy Kidas M) =120 Foraytss(o) = ORae K0 Grars (Koo R ¥ 00)

Iii’foz\[an different (0, 2) diagrams]|.
(11 4)
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In addition, for future reference, we shall introduce a
generalized interaction

K A Eyh s K A K )

_ lim 543,
T 70 3s1(a) Bs3(B) 6si(c)bs1(d)

= I"a"b; Ted (&Aa ;Kb)\b;Kc)\c;Kd}\d)
= :;T o2 [all ditferent (2,2) diagrams].

a‘‘a»

(IL. 5)

An (ny,n,) diagram is a connected diagram with »,
broken lines entering and n, broken lines leaving,

Once the propagators and generalized interactions
are defined, we can take the limit v;— 0 and Fourier
transform the 0’ diagrams and (x4, #,) diagrams so that
they are expressed in terms of momenta and “frequen-
cies” rather than momenta and temperatures (cf, Ref. 4).
No diagram will then contain single-particle sources,
Rules for evaluating these diagrams are given in the
Appendix,

It is convenient also to introduce an irreducible self-
energy

rl
l.f’ ;

1/\

"2 23[all different irreducible
(1,1) diagrams]

7172 (1
(11, 6)

and two anomalous irreducible self-energies

1 “’. 1/1__1

gy "5, M)=12]all different irreducible

’U + (2,0) diagrams]

aL.7)

and

! 4

__1([1’: =37, ()=, Llall different irreducible
1. w1 (0, 2) diagrams],

(1. 8)

We have now defined the self-energies in terms of
frequencies rather than temperatures. In Egs, (II. 6)—
(1. 8), the dotted lines are included for labeling pur-
poses only, No factors are to be associated with them,
An irreducible diagram is one which cannot be cut into
two parts by cutting one line, Irreducible (ny,n,) dia-
grams are evaluated by the rules in the Appendix, We
have used the notation '2,172 1)=%,,, (Kq, 2¢).

We now can obtain expressions for the propagators
in Eqs, (IL 2)—(II, 4) in terms of the self-energies in
Eqs, (II. 6)—(II. 8). Let us denote

p
i - (’2172 1)= 671. 72/(izl - wy), (. 9)
b‘l

We can then write the following equations for the prop-
agators in Eqgs. (II. 2)—(II. 4):
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’172(1)_ A L
LA 3, 1 1K 1 1
1% = 1 + + + L
L L 1
1‘.
(I1. 10)
0,0 =
U,, 82. x-"-
L1 L5
4 -1 1
1 1= + %,
4 -1
(IL. 11)
617, )=
-1 1
-1 ﬁ 1 +
Y, 2 R S| %
)
¥
Y LY s
(1. 12)
Gy ()=
Y, L2
¥, ~1
% 1 AR a
1 = 1 + + Y,
81 81 -1
XL
(I1. 13)
where (xy 7 (-1)=6, , (- Ky,- z;). Equation (II.13) is

identical to Eq. (II. 16) but is included for completeness,
Note that by symmetry

Gy, (Kiz) =G (- Ky, = 29) (I1, 14)

and

(’;1;2 I<'1"?"1) 7271( Kii_zl) (H915)

The propagators and self-energies are 2 X2 matrices
in spin space, Equations (II. 10)— (II. 13) can be written
in terms of 2 X2 matrices if we introduce the notation

G, (1)  G,.(1)
G(l)=
G..(1)  G.(1)

with similar notation for the other propagators and
self-energies, Equations (II, 10)—(II, 13) respectively
can now be written

(I1, 16)

G =31 +8') SN Y+ GO E 1) G 1),

(I1, 17)
GO =G'1) 29M) G- 1T+EMSM) G,

(I1.18)
GO =6-1)T EOM) G1) +E-1)TS (- DTG,

(11, 19)
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and

G- 17 = GV~ 17+ GV(=1)T & (- 1G (- 1)

+CU= 1T SO W6, (I1. 20)
In Eqs. (II.18)—(II. 20) 7 denotes transpose of the spin
matrix. Equations (II. 17)—(II. 20) yield the following

solutions for the propagators in terms of the self-
energies:

Cy=N-3m) $a)- 6" £+

x[1- G- 1T S (=118 (- 1F DO 6 ),

(I, 21)
G- =[1- O E -1 - O -1 3O
x[1-6'0) £ M6 ) 3 LG (- 1Y,
(I1. 22)
G“)(l) = [1— 60(1) ) (1”'160(1) i (+)(1)é(_ I)T, (IL. 23)

and
GO (1) =[1- G- 17 £ (- 6 (= 17 £ 1)G ).
(I1. 24)

The four equations Eq. (II.10)—(IL. 13) can be written
in terms of a single 4 X4 matrix equation if we introduce
the notation

G(1) G'(1)
G(1)= , (1L, 25)
G1) G(=1)"
(1) Z(1)
Sa)-= , (11, 26)
201 S(-1
and
Gy(1) 0
Gy(1) = (IL. 27)
0 Go(= 1)y
Equations (IL. 17)~ (II. 20) now reduce to the simple form
GC(1) =G, 1)+ G,(1) TMEQ). (IL. 28)
The generalized propagator 5(1) has the solution
G =[Gt - T, (IL. 29)

We have expressed all the propagators in terms of
irreducible self-energy structures. We can now use a
method due to Luttinger and Ward® to write the generat-
ing function B’(B, g, 0, Vu) in terms of propagators and
self-energies. The result is

B(6,, v i) =3 PR TR S MEW
+1n{T(1) - Go(1)*] +B{G)}, (IL30)

B7{G}=Y [all different irreducible 0 diagrams
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with solid lines replaced by propagators
Eqs. (II.10)— (1L, 13)].

Irreducible 0/ diagrams contain no self-energy struc-
tures. (See also Ref. 7 where a similar expression is
given for the grand potential of a superfluid Fermi
system, )

In Eqs. (II.29) and (I1. 30 we have expressed the
propagators and the generating function B/(8,g,0, v;)
in a form in which all self-energy effects have been
resumed. We can now take the limit v;; — 0 and obtain
an equation for the gap in terms of reaction matrices.

Itl. GAP EQUATION

We shall use a method due to Johansson? to find a
self-consistent equation for the gap. Let us first note
that the generalized interaction l7 1,2,3,4) (now
written in terms of frequencies) sa% f‘“les the equation

Ly (152,3,4) = 1 /2
1 2 4 ?\\\ 7{
. 4 \ r2 23 ¥,
s K yoy
% % ¥, — N Y,
d; . ‘84‘ H’s/ \3’4 +
AN AR
3 4 3 4
%
AR
3 T4
ImI. 1
where G Ve ( )
Refd
Jrl'r Lo (1)2’3a4)5 ﬁz’g\;-q
~xON
\;' N q
=2_[call different @
irreducible (2, 2) diagrams], (1. 2)

A @-irreducible (2, 2) diagram has two broken lines
entering and two broken lines leaving and cannot be cut
in two parts by breaking two identically directed lines,
(2,2) diagrams are evaluated in the same way as 0’
diagrams except that no factors are to be associated
with the dotted lines. We have used the notation 1,1727374
1,2,3,4) 517172,374(1{121;KQZZ;I%Z;;;K4Z4).

We can now write the following integral equations for
the anomalous self-energies:

\ J N
A}
koA

(I11. 3)
and
A= 8+ R
7\ \\ 7‘ \ 7( AT
/ \ ‘ \ /7 \ (I11. 4)
where \ , s J
\ / )\\\ .," )Q‘ 7\
\ ’
R n
X
(I11. 5)
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and
An T @*@
‘ 7R A X
4 /

> \ (111, 6)
= + N
(111 7)
The gap functions are defined as
+ 1 * /"l m
M, M=y TR AT S e ) (L)
A m ke
and D
Y ¥,
MnW=T ‘,: = T, (). (L 9)

/ T

When we take the limit v;; — 0, the first terms on the
right-hand side of Egs. (III, 3)— (I11. 6) will go to zero,
If the generalized interaction /,,,,, 1,2,3,4) is well
behaved, then the second terms w ﬁl also be zero and
the gap itself will go to zero in the limit v{; — 0. In this
case there will be no condensed phase in the Fermi
fluid. However, if the generalized interaction is singu-
lar (infinite), the limit v;; — 0 is not well defined and the
second term on the right-hand side of Eqs. (IIT, 4)—

(111, 8) need not be zero, In this case the gap can be
finite and gauge symmetry of the Fermi fluid can be
broken,

In the case when gauge symmetry is broken,
Eqs. (III.1)—(IIL, 9) yield the following equations for the
gap:

ap,M)= 73_7__3_76 2 Trirgn = 1,2, 2)
X Gy (2)G, o (- 2)A5 (2) (I11. 10)
and
Nol= T 767‘ 852,206, (2)
X Gy (= Doy (2, - 251, - 1), (UL 11)

[Note that our equation for the gap is more general than
that of Johansson because we have used the full prop-
agators G,i,2 (1).] In order to determine if gauge sym-
metry of the Fermi fluid is broken, we must study the

effective interaction J71727374(1’ -1,2,2).

IV. GAP EQUATION FOR A LOW DENSITY HARD
SPHERE GAS

We shall now obtain an expression for the effective
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interaction .J,, , , (1,-1;2,-2) in the forward scattering
approx1mat10n f‘rom Refs 1 and 8, we can write the
basic vertex function

Kiv;Kpyy
A

Kivs:Kayg
as

Ky Ky
A

KsVaKn

CHKp) Kyvy;Kpyo | A | Kyyg; Ky

20 +1

= O(Ky + Ky = Ky = Kp) 22 = By Kyy)

x[(¥,7, | PRI CRVCRN YY)

(E cos'0, () (Kygl | A |Kizl>> av.1)

T Ky,
where F’,(K12 K3i) is the Ith order Legendre polynomial,
K=3i(K,-K,), K;; =K,/ 1K1, and 5,(k,) is the Ith
order phase shift, We will be mterested primarily in
the effect of long wavelength spin fluctuations on the
particle—pair interaction. For this case, we can
approximate the basic vertex function by its value for
forward scattering

Kivi Kove
A
Kivs Kpvy

=K, + Ky - Ky - Kp) (-

i, m

1y 52 +1
PR
S CA | gy ~ (= Dyl varp ]

2
(%———Lﬂcosifu(l( )tané,(1{12)>.

(Iv. 2)

At very low densities, where the momentum of the
interacting particles is low, we have

tans, (K) ~ - (Ka)****/ @1 + D[l - )11} (Iv.3)

where K is the relative momentum of the scattering
particles and a is the radius of the hard sphere. The

phase shifts take the form

5o(K) == Ka + O[(Ka)® (Iv. 4)
and
5, (K) = O[ (Ka)2* 1], (Iv. 5)
Thus at low density, for forward scattering, we have
Kivi Ky, 4ra
A < 0K+ K - Ky - Ky) o3
Kars Ko Kvivelvava) = vl vevsd (Iv.6)

Let us now expand the spin wavefunctions in terms of
eigenstates of the total spin of the particles, is,sS,).
Thus [4H=11,1), 1¥H=11,-1), 1+ =(1/V2){i1,0)
+10.0)} and 1+4)>=(1/Y2}{11,0) - 10,0)}. The states
is, s,) are orthonormal, It is easy to see that

Kt K

=0, (v.m
Kt Kt
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Kt Kt (47a)

y SO+ Ky - K= K) ST (1v.8)
Kt K ! (2r)
and
t K
A :—5(K1+K2—K3—K4)g—:%2. Iv. 9)
K+ Kt

Thus, parallel spin pairs {S=1, S,=1) do not experi-
ence the hard core directly because of exchange effects.
We further note that the effective interaction for parti-
cles with spin S=1 and $,=0 is

K; K, Kt Kb + Kb
=|A +A =0, (IV.10)
Ks Ky/sa1 K.t Kb K¢ K4
Sg=0
and for particles pairs with §=0 and $,=0 is
K K tKN K Ry
Al — | A - A
K, Kt Kt Ko Kyt
(4na) av.11)

:6(K1+K2—K3—K4)W°

Thus only pairs with total spin zero experience the hard
core directly,

The entire effective interaction for particle pairs with
spin S=1, S,=1 mediated by spin fluctuations is given
by the diagrams in Fig. 1. At low densities, the impor-
tant contribution comes from those terms containing
one loop since each loop is proportional to K., It is
easiest to write the effective interaction at the critical
temperature where the gap is zero since the gap will
introduce anisotropies into the system.? Furthermore,
for simplicity we shall neglect self-energy effects in
the propagators. We then obtain

J(Q,€1) 521, 5252 =T (Q, €1)44; 14

2ma 1 _ 1
(27)° 1+ 47ay,(Qg;)  1- 4may, (Qe;)

_ = (4ma)?

*—@m? %@ (V. 12)

where Q=K - K, and ¢,=2,— z,. The response function
X0 (@, €;) is defined as usual as

o117) -

FIG. 1. Diagrams which contribute to the effective interaction
of particle pairs with spin S=1, Sz=1.
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FIG. 2. Diagrams which contribute to the effective interaction
of particle pairs with spin S=1, Sz=0.

Xo @)= _%Z—:f (ng3 <ie,+ iz —Iw(K+ Q)>(i2 ‘1w(K)>
(1v.13)

and is positive in the limit Q -0, ¢, ~ 0. In considering
long wavelength and low frequency spin fluctuations, we
are limiting ourselves to small Q and ¢; and forward
scattering, |Kjl =K, and K|~ K, and x,(Q, ¢;) = x,(00)

= me/27r2_ The effective interaction between parallel
spin particles is negative,

The effective interaction for particle pairs of spin
§=1 and S,=0 is given by the sum of the diagrams in
Figs, 2a and 2b, We find that for particle pairs with
S=1, 5,=0, the effective interaction is also

J(Qel)s=1,s,=0: "(Qgel)n;u +J(Q€l)n;n

_ 27a [ 1 _ 1
T (@n)? 1+4nay,(Qe,) 1- 4"”X0(Q1€1)]

_ 2
:__5((24;7)0) Xo (sz)n

(1v.14)
Thus, for low-density hard-core particles at the Fermi
surface which are mediated by long-wavelength low-fre-
quency spin fluctuations, the effective interaction be-
tween pairs of particles with total spin S=1 is attrac-
tive, At the critical temperature, the effective inter-
action for pairs with (S=1, S,=1) and (S=1, S,=0) are
equal, This result is rigorous for particle pairs at the
Fermi surface. We can now apply the usual arguments
to Eqs. (IV.11) and {IV.12) to obtain an expression for
the critical temperature (see, for example, Ref, 9,
Chap. 7).

V.CONCLUSIONS

In this paper, we have considered a rather simple
application of the binary expansion in order to illustrate
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the meaning of various quantities in the theory, and
because it enables us to compare various features of
the binary expansion and quantum field theory, We see
that the basic structure of the two theories is quite
similar except that the binary expansion contains extra
terms (the D-vertices) and the two theories give dif-
ferent weights to repeated scattering processes, The
main difference in the two theories, however, is in
their treatment of basic interactions in the fluid, The
basic vertices in the binary expansion are given in
terms of the exact solution to the two-body problem,
whereas the basic vertices in quantum field theory,
for particles with hard cores, are infinite and meaning-
less, since they involve the Fourier transform of the
Lennard—Jones potential,

If we go to higher densities, use of the forward scat-
tering approximation will certainly not be satisfactory,
and we must consider the full scattering problem, In
that case, the simple method of Matsubara for summing
“secular” effects is no longer applicable and we must
use the method of Laplace transform discussed in
Ref. 10. While the structure of the propagators will be
more complicated when using the Laplace transforma-
tion, the method for obtaining the gap will be the same
as that considered here.

APPENDIX: RULES FOR EVALUATING 0' DIAGRAMS
AND (n,, n,) DIAGRAMS

(A, 1) Label the lines from 1 to n, where » is the
number of lines, and associate to the jth line a momen-
tum K, and an energy Z,:vn,/B, where »; is a positive
or negative odd integer.

(A, ii) Associate with each A-vertex a factor

Kivi:Krg

Kavs; Koy

i, 84 -~ B§n1+ ny, ng+ n4A

(A, iii) Associate with each Si;-vertex a factor
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1 0 0
% .
= 55"1*',2'03( )

B ) Kivi Koy .

(A, iv) With the jth line associate a factor

where z; =71;/p (7; odd integer) and w, =k3/2m — q.

(A, vi) Multiply the entire expression by a factor
¢f8(1/S), where P; and S are defined in Ref. (Rule B8),

Q 1 :ez:,ln(l— ee™Bury,
1

With each closed loop that attaches to a single vertex,
associate a factor

O gl
8| (Z.Zl - wl) °

(A, vi) Multiply the entire expression by a factor
€F3(1/S), where Py and S are defined in Ref, (Rule B8),

(A, vii) Sum over momenta K; spins, y; and odd
integers n;, and multiply by 1/8 for each internal line.
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Classification and construction of finite dimensional
irreducible representations of the graded algebras;
application to the (Sp(2n); 2n) algebra
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A method, which enables us to construct the finite-dimensional representations of the graded Lie algebras
[explicitly the GLA (Sp(2N); 2N)] on the irreducible tensors is suggested. Those tensors are constructed
with the aid of the specifically symmetrized products of vectors from the fundamental [ie., 2N +1)-
dimensional] representation space of the graded Lie algebra. The tensors, on which it is possible to
represent the graded algebra (Sp(2N); 2N) irreducibly, represent a generalization of tensors which are

known from the general representation theory of the symplectic Lie algebra Sp(2N). The knowledge of
the irreducible tensors of the algebra Sp(2N) gives us then the possibility of solving the problems of
classification as well as construction of the irreducible tensors of the graded algebra (Sp(2N); 2N). For

illustration, by using the suggested method of tensors the irreducible representations of the simplest

graded algebra, i.e., of the algebra (Sp(2); 2) are constructed.

1. INTRODUCTION

In the physical as well as in the mathematical litera-
ture much attention has been devoted to the study of
graded Lie algebras during the several recent years.
By using various methods a number of authors!~ solved
the problem of classification of the graded Lie algebras
and at present it seems that the problem of classifica-
tion has been fully solved.* The problem which is left
and which should necessarily be further solved, is the
problem of classification and construction of the irre-
ducible representations of the particular graded Lie
algebras,

As far as the use of the graded algebras, for instance,
in elementary particle physics for the purpose of classi-
fication of particles, it is naturally necessary to know
the structure of the irreducible representations—of the
multiplets of the graded algebras, since the vectors of
the basis of these irreducible multiplets should corre-
spond to the particular elementary particles. One of the
first attempts to using the graded Lie algebra spl(2,1),?
[denoted also by (SU(2)2 SU(1); 2 ¢2) according to
Ref. 3] was for the purpose of classification of ele-
mentary particles (see Ref, 6), The particles as me-
sons and baryons with the same isospin and hyper-
charge, but different spins and baryon numbers were
classified in the frame of so-called supersymmetric
octets—the eight-dimensional irreducible multiplets
of the graded algebra spl (2,1). We can, in principle,
also use more complicated graded algebras in a similar
way, of course, only under the assumption that we know
the structure of the irreducible multiplets, i, e., the
structure of the representations of these graded alge-
bras, The irreducible representations have been studied
systematically and explicitly constructed only for the
two simplest graded Lie algebras: (Sp(2); 2), see
Refs, 2 and 5, and the already above-mentioned alge-
bra spl(2, 1), see Ref. 5.

Some general statements, which regard representa-
tions of the graded algebras are given in the paper by
Kac.?! The most important of them is the theorem ac-
cording to which the irreducible representations of the
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graded algebras are characterized by the highest
weights, which is similar to the case of the representa-
tions of the classical Lie algebras. At present, how-
ever, the problem of the structure of the representa-
tions (the representation spaces) which are charac-
terized by the highest weights (e.g., the dimensions

of these representations) are not known and the matrix
realizations of the generators of the graded Lie algebra
in the representation spaces specified by the corre-
sponding highest weights has not been solved yet.

One of the possibilities of how to approach the solu-
tion of these—up to now not yet, generally, solved—
problems in the case of the graded algebra {Sp(2¥); 2V)
is the subject of this paper.

The content of the particular sections is as follows:
The structure of the graded algebra (Sp(2V); 2N) is
mentioned in Sec, 2, In Sec. 3 we study the matrix
realization of generators of the graded algebra
(Sp(2N); 2N) in the (2N + 1)-dimensional space £ (in
which the lowest-dimensional, i.e,, the fundamental,
representation acts), and the matrix realization of the
generators of the graded algebra in the spaces 22,
RERER, RERBR &+ of tensor products of the funda-
mental representations 2. In Sec. 4 the method of con-
struction of the irreducible tensors of the graded alge-
bra (Sp(2N); 2N) is presented. In the last section the
irreducible tensor representations of the simplest
graded algebra (Sp(2); 2) are explicitly given,

2. STRUCTURE OF THE GRADED ALGEBRA
{Sp(2N); 2N)

The graded Lie algebra (GLA) (Sp(2N); 2N) is generat-
ed by the following operators:

(i) The Sp(2VN) operators X, {,j=-N,...,-1,1,,.,,N
(see Ref, 7), from which, of course, only N(2N +1) are
independent generators.

The operators X;; fulfill the relations
Xig==eieX 5,

where ¢;=+1 fori>0, ¢,=-1for i <0,

2.1)
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(ii) The vector [w. r,t. the Sp(2N)] operators ¥,
E=-N,...,-1,1 N,

Iveny

The graded algebra generated by the X;; and V, is
then defined by the following commutation and anticom-
mutation relations, see Ref. 8:

(X155 Xpr] = 845Xy = 841X, (2.2)
+e4e 001X g €560 X 15

(Xiss %l= @)%,

{Vk, V;}:(gQu)an,

where g is the matrix with the matrix elements g;;
:Eiai-h i,j:_ N’“ sey 1,1’ reey N, and Qil are
matrices with the matrix elements

(2,3)

The matrices @;; represent the generators X;; in the
lowest dimensional (i. e,, 2N-dimensional) representa-
tion of the symplectic algebra Sp(2W).

(Qi1)2r= 0110p; ~ €:6,0.440- 1.

3. REPRESENTATIONS OF GENERATORS OF THE
GLA (Sp(2N); 2N)

A. The fundamental {2/ + 1)-dimensional representation
in the space R

It is possible to represent the algebra of operators
X;; and V, by the matrices in the representation space
R of dimension (2N +1), This representation is the
fundamental (lowest dimensional) representation of the
GLA (Sp(2N); 2N). If we decompose each of the (2N +1)
X (2N-+1) matrices 4 in R into four blocks according to
the scheme

2Nx2N) (2Nx1)
A= ,
(1 X2N) 1x1

in which the row and column matrix indices take up
(2N+1) values - N,...,-1,1,...,N,0, (in the given
order), then the generators X;; in X are represented by
the matrices

Qi) (0)

;= 3.1)

YA

with the nonzero “diagonal” blocks @;;, while the opera-
tors V, are represented by the matrices

() (#0)
Uk = ,
(#0) ()

with the nonzero “nondiagonal” blocks, in which the
nonzero matrix elements are given by

(1)k)mv 0= V2 6Iem’ (7)k)0, m= ‘fz—gkm-

(3.2)

(3.3)

This representation is the grade star representation in
the sense of the definition given in Ref. 5. If we define
for the operators » =(% ¢) [see Eq. (3.2)], the grade
star operation (i) as v¥=(4+ ~P), then it is possible to
easily verify, that for the matrices v,, given by Eq.
(3.3), the following relation

7!3:_0" v

Skmtm

is valid,
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B. The tensor products of the fundamental representations
R inthespaces R ® R, ROR:R, R'® R ®R'® ...

We mention the realization of the generators of the
graded algebra (Sp(2N); 2N) in the space Rg Rof the
direct product of two fundamental representations first.
The generators of the algebra (Sp(2N); 2N) which act in
Re R are denoted by X2 and V' for simplicity.

Both these generators are expressible with the aid of
matrices ¢;; and v,, which act in the corresponding
spaces R,

The Lie generators X{¥ are on R@ R given by the
prescription

X =qy,01+12q,,, (3.4)
where I is the (2N + 1) -dimensional diagonal matrix
(Iy) O
1= R (3.5)
0 1

The operators V, are constructed in a somewhat com-
plicated manner, namely

V® =0, 81+1I8Y,, (3.6)

where II is the (2N +1) ~dimensional diagonal matrix

Ly O
u= , 3.7
© (1)
where I, is the 2N-dimensional unit matrix, The
operators X2 and %®, defined in Rg Rby Egs. (3.4)
and (3.6), fulfill relations (2, 2). It is possible to imme-
diately verify this statement by applying the identities

{AeB, CaDl=[A,Clo[B, D]+ {4, Cleo (R, D},

(3.9)
[AgE, CeDl=13[A,C|e{R,D}+ 3{A, (2[R, D],
(3.9)
and the relations
[rp, 11=0,  {r,,I}=0, (3.10)

which follow from the definitions (3.1), (3.2), (3.5),
and (3.7), in which the generators of the graded algebra
are expressed with the aid of matrices for the opera-
tors Tijy ey I, and TI.

We are going to consider the general case of the
direct product of n-fundamental representations A ,
i.e,,

ReRQ -+ 2R,
—m N

n times
The generators of the graded algebra in
ReRz @R
I e ™
n times

will be denoted by X{? and V™. These generators can
be expressed in terms of the generators X{T" and 7"V
[which act in the space

RoRe &R
(n~1) times
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of the direct product of (z- 1) fundamental representa-
tions] in the following way:

X(n) :X("'“@I + I("-1)®q“,

(3.11)
V(n) V(n-1)®I + ]I("-i)®7)k
Here, 1! is the unit matrix
IV =13Ig- 1 (3.12)
and 11" is the diagonal matrix
(3.13)

IV =Qglg- - o0,
both defined in

(n—1) times

Using Egs. (3.11) we can express the generators
XY and %1 with the aid of X{7"? and V™2, By
repeating this procedure we get, at the end, the ex-
plicit expressions for the operators X{}® and ¥, which
are expressed with the aid of the fundamental matrices
q4y and v, (those represent the generators of the GLA in
R).

4. THE METHOD OF CONSTRUCTION OF TENSORS,
IRREDUCIBLE W.R.T. THE GRADED ALGEBRAS
(Sp(2N); 2N)

We denote by X a vector from R (i,e. XcR); xis a
(2N +1) -dimensional vector with the components
KXoy 0==N,...,=1,1,...,N, 0. It is evident that the
operators X(’" and V"" act in the space of n(2N+1)
tensor components xl 2., % (@4, @2, 035000, @, == N,
-1,1,...,N,0) olf the tensor given by the direct
product of n vectors, i.e,,

e X",

The GLA (Sp(2N); 2N) is obviously not represented
irreducibly in the space of n(2N + 1) independent com-
ponents x11x2 TRV 5 i Naturally, the following questions
arises: (i) How the irreducible tensors (w, r,t, the GLA)
are classified, (ii) what is the structure of these irre-
ducible tensors, and (iii) how they are constructed
explicitly? Finally, to which irreducible components
can the direct product Rg R®A® -+« & R be decomposed?

,‘18,{2® .

To give an exhaustive answer to these questions is far
from being easy. However, it is possible to easily find
the answers to questions (i) and (iii),

It is well known, see Ref. 9, that any irreducible
representation of the Lie algebra Sp(2N) is specified
with the aid of the Young tableau |A;, g, ...,2y], which
in a unique way determines the type of the symmetry of
the corresponding tensor T‘” of the order » =, + X,
++<++2xy, on which the symplectic algebra Sp(2N) is
represented irreducibly.

The components T,fq” &, » Of the tensor T have r
tensor indices k,, k,, ..., k =-=N,...,-1,1,...,N
These components are constructed w1th the aid of the
specifically symmetrized products of » vectors x!,
x%, ..., X" (the type of the symmetry of the tensor is

specified by the corresponding Young tableau), i.e.,
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with the aid of the components

xklxkz"'xgr, Ryskyy tt ok, ==N,> 0, =1,1,

We shall therefore assume, that we know explicitly
what the tensor components of the irreducible [w.r.t.
Sp(2N)] tensor of the 7th order are which correspond
to the Young tableau [Ag, Ay, ..., A\

If we act on these irreducible components [with #
indices of the type ¥ (==N,...,-1,1,...,N)] by the
operators V;”, we get tensor components of the new
type: with (» —1) indices of type k and one index of type
0. In case we act on these new components further by
the operator V,:”, we get the next new-type components,
which have the ( —2) indices of type %k and two indices
of type 0. In this way we can construct all tensor com-
ponents of the new tensor—of the same order »—the
tensor indices which already take up (2N + 1) values:
~-N,...,-1,1,...,N,0.

It is possible on the tensor components of the new
tensor, the construction of which has been just de-
scribed, to represent the graded algebra (Sp(2N); 2N)
irreducibly. At the same time the representation of the
GLA (Sp(2N); 2N), realized on tensors constructed in
this way, is specified by the Young tableau [Ay,...,\y],
which describes the type of the symmetry of just those
components [of the irreducible w.r.t. (Sp(2N);2N) ten-
sor], which have all tensor indices of the type
E(=-N,...,=-1,1,...,N). In this way, for the GLA
(Sp(2N}; 2N) the problem of classification of representa-
tions can be solved. Further, the problem of the con-
struction of the basis in the representation space and
the matrix realizations of the generators of the GLA in
these representations can be solved. In the next section
we apply the method of tensors to the description of the
irreducible representations of one of the simplest
algebras, namely, the GLA (Sp(2); 2).

5. THE GRADED ALGEBRA (Sp(2); 2) REPRESENTED
ON IRREDUCIBLE TENSORS

The Lie algebra Sp(2) is isomorphic to the Lie algebra
SU(2) and consequently the graded algebra (Sp(2); 2) is
isomorphic to the GLA (SU(2); 2) (see Ref. 2). For
formal simplicity we are therefore going to consider
the GLA (SU(2); 2) and to study its representations.

The GLA (SU(2); 2) is generated, Ref. 2, by the
SU(2) generators @ _, m=1,2,3, and by the two com-
ponents V,, & =zx3, of the spinor [w.r.t. the SU(2)]
operator V. The commutation and anticommutation rela-
tions of these operators may be written down in the
form (Ref. 2):

[Qm’ Q ]:iemanp)
(9, Vol =% (T)sa Vi, 5.1)
(Ve Vit =2(C7,)0Q,,,
where Tm(m =1,2,3) are the Pauli matrices, represent-
ed by
0 1 -1 1 0
1 > T2 = ’ Ty = .
1 0 i 0 0 -1

The charge conjugation matrix C is in this representa-
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tion of Pauli matrices given by

0 1
C= . 5.2)
-1 0

It is purposeful to introduce in the algebra SU(2) the
spherical basis of the operators @,, @,, defined as

Q, =@, +1Q,. (5.3)
Definition equation (5.1) of the GLA (SU(2); 2) may be
then rewritten to the following form (Ref. 5);
(@@, 1=%0Q,, [Q.,Q.]1=2@,,
[Qs, Vn/z]:i é'Vn/z’ Q.Y 1/2] =0, [Q,, Vn/z] =V1/2
JLV“/z’V“/z}:i%Qt’ {V;_I/Z’Kl/Z}:—%Q!i’
(5.9

The space for the fundamental representation of
the GLA (SU(2); 2) is three-dimensional and therefore
the generators of GLA on it are represented by 3 X3
matrices. It is possible to define the vectors of the
basis in R in the following manner:

1 0

0
X1/2: 0), X-l/z: 1 ’ ’vDo: 0). (55)
0 0 1

The SU(2) generators @, and @, are represented in
this basis by the matrices

1 00 010 000

Q;=3l0 =1 0}, @ =[000), @.=[1 00

0 00 000 000
(5.6)

In the first grade-star representation the operators

V... are represented by the following matrices:

001
V;uz:% 000} (5.7)
010
000
Vie=z2 0 01 (5.8)
-1 00
It is easy to verify that the matrices (5.6), (5.7), and

(5.8), correspondingly, represent the generators of the
GLA (SU(2); 2), i.e., they fulfill relations (5.1).

We are next going to discuss the construction of
further representations of the algebra (SU(2); 2) of
higher dimensions.

It is well known that the algebra SU(2) is represented
irreducibly on the multispinors. It is defined as (See

Ref. 10) 2

9 )‘ 1/2 e e — .
CO~(Grontmen) A s

(s+3) (s=0)

(5.9)

(here the sum runs over all permutations P of the 2s
indices which correspond to different orders of the
indices %,—3), where
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Eifaoeer/21/200c-1/2
I Vo, R

(s+a) (s-0o)
=XysaXige T XygeXors2t T Xopye
e ———
ts*a) (s=0) (59 10)

is the product of the (s + o) spinors X1,z and the (s —0)
spinors x. ;.

The accessible values of the spin s are 3, 1, 2,

2, and that of the third spin-component ¢ equals
O==8,...,S.

On these multispinors the representation (character-
ized by the spin s) of the algebra SU(2) is realized as:

Q,&,(0)=3Vs +0)(s —o + g (0 - 1)
+3/(s=0)sF¥o+1)glo+1),
@/2)0V(s+0)(s =0 +1) g0 - 1)
—(@/2Vs=0)(s +o +1) &0 +1), Q4

Qz és (G) =

g 0) =0 (o).
(5.11)

Thus, we know the irreducible “tensors” (i.e., the
multispinors) of the order 2s, on which it is possible to
represent the algebra SU(2) irreducibly. The “tensor”
indices of components of this “tensor” are of the type
k(=+4%,-+), in the sense of the terminology of Sec. 4.

We shall aim further at the construction of the next
tensor components of the tensor of the order 25, on
which it would be [together with the known components
denoted by £_(0)] possible to represent the whole graded
algebra (SU(2); 2) irreducibly.

If we act on £,(6) by the operator VQS) we get the new
expressions, which contain (2s - 1) mdlces of type %
(=4 %) and one of type 0. These new expressions,

normalized to the unit and denoted as &, _ 1/0(0 -3, may
be written in the form
. 1y 1 (25)‘. 1z
IVECAS ¥s+o\(s+o) (s —a)!
28
M
xiol/“’- 1/”-1/2 s=1/20 (5.12)
e
(s#c 1) (s=0)
where
Suw"-A:nu"]yna""']/\’ (5013)
in which 7, =y, for £ =13, 1, =y for u=—1 and

7,= Yy for =0,

We can easily verify, that the following relation is
valid,

V) E ()=~ 55 Fo £ (5.14)

l
Vi &s s-172(0 = 3.

If we act further by the operator VQS’ on the terms

£eup /a0~ 3), we find simply that its actxon is
‘/(1/253_1/2(0— D=-iQ.t,0).

It follows from Eq. (5.15) that the tensor components,
which should contain two or more tensos indices of

(5.15)
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type 0, are not included in the irreducible [w.r,t. the
(SU(2); 2)] representation space, which contains £.(0),
Eee1/2(0 = 2.

Therefore, the GLA (SU(2); 2) is represented irre-
ducibly on the space (of tensors of the order 2s) in
which the basis is formed by

£s(0),

1 1
bo17200), 0==s+35,...,5—3

c=-5,...,5 (spin s),
(spin s — 3).

The action of the generators V}J% of the GLA on the
tsand &gy, follows from the equations:

V;f/sz)is-i/z(g— 2)_ L ETE T - 1),
Ve (0) == 3VSF0 £guypnlo— B),

V, 1261200 = 3) = 2/s F 0 £,(0),
VI (0) =2V =0 £y a0+ B).

(5.16)

It follows explicitly from these equations, that the
(4s +1)-dimensional subspace [with the basis formed
by the functions £,(c) and £, ,,(0) in the space

2s times

actually forms the subspace for the irreducible repre-
sentation (specified by s) of the graded algebra
(SU@); 2).

These representations were, of course, found only
recently by a quite different method, and studied in
Refs, 2 and 5.

The reply to the question: How to clasify the irredu-
cible representations of the GLA (SU(2); 2) is contained
in the following statement: To any integral and half-
integral s, i.e., S=3, 1, 3, 2, 3, 8, -~ there exists
the irreducible (4s +1)-dimensional representation of
the graded Lie algebra (SU(2); 2), realized on the tensor
components £.(0) and £,.;,5(0) [Egs. (5.9) and (5.12)] of
the tensor of the 2s-order,

By the method suggested in Sec. 4, we have con-
structed the irreducible representations of the simplest
of the graded algebras, i.e., (Sp(2); 2).

The explicit construction of the representations of
the more complicated graded Lie algebras (Sp(2V); 2N),
N=2,3, --and others will be given in further papers,

6. CONCLUSION

In this paper the problem of classification and the
construction of the irreducible representations of
graded Lie algebras (Sp(2N); 2N) is studied, A method
is suggested, which enables us to construct the irre-
ducible representations of these algebras, constructed
in the framework of the tensor products of vectors
from the space of the fundamental (i. e., the lowest-
dimensional representation of the graded algebras
(Sp(2N); 2N). The method, with the help of which the
irreducible representations of the symplectic GLA’s
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(Sp(2N); 2N) are discussed, has, of course, a general
validity and can be applied to the study of representa-
tions of any classical graded algebras G (=Gj+ Gy,
where Gj is the Lie subalgebra) which is simple, or
semisimple, and at which the representation Gj in Gy
is fully reducible (Ref. 4).

In general, only the problem of classification of the
representations of the graded Lie algebras with the aid
of the highest weights (the theorem by Kac, Ref, 4)
was discussed in the literature. Meanwhile, till the
present day, no one had solved the problem of structure
of the representations, which are specified by the
highest weights. To solve this problem in the graded
algebras is however, a substantially more complicated
task than for the classical Lie algebras, mainly due to
the fact that the representations of the graded algebras
could be not fully decomposable, i.e., they can contain
the invariant (w.r.t, the graded algebra) subspaces
(see Ref, 4).

The constructive method presented in this paper
enables us to solve the problem of the structure of
representations of the GLA, It enables us to explicitly
construct the basis in the representation space, which
is specified by the highest weight, Furthermore, in
such a basis in the representation space it enables us
to represent all the generators of the GLA by the ex-
plicit matrices.

For this reason the method which uses tensors is a
useful tool; with its help the up to now open problems
in the theory of representations of the graded algebras
can now be solved,

ACKNOWLEDGMENTS

The authors would like to thank Doctor J. Niederle
and Doctor L, Trlifaj for useful comments.

'P.G.O. Freund and I, Kaplansky, J, Math. Phys. 17, 228
(1976).

A, Pais and V. Rittenberg, J. Math, Phys. 16, 2062 (1975).
SW. Nahm, V. Rittenberg, and M. Scheunert, Phys. Lett,

B 61. 383 (1976); M. Scheunert ef al, | J. Math, Phys. 17,
1626, 1640 (1976).

4V, G. Kac, Commun. Math. Phys, 53, 31 (1977).

M. Scheunert et al, , J. Math. Phys, 18, 146, 155 (1977).
fR.C. Hwa and C.S. Lam, Phys., Rev. D 12, 3730 (1975).
'A.M. Perelomov and V.S, Popov, Yad. Fiz. 3, 1127
(1965), C,0O. Nwachuku and M, A, Rashid, J. Math. Phys.
17, 1611 (1976). _

®M. Bedndf and V. Sachl, “Fourth Degree Casimir Operator
of the Semi-Simple Graded Lie Algebra (Sp(2N)+2N) "

J. Math, Phys, 19, 1487 (1978),

®H. Weyl, The Classical Groups (Russian transl,) (Publishing
House Inostrannoj Lit., Moscow, 1947), M. Hammermesh,
Group Theory (Addison-Wesley, Reading, Mass., 1964).

101,, D, Landau and L. M. Lifsic, Quantum Mechanics (in
Russian) (Publ. House GIFM Lit., Moscow, 1963).

M. Bednar and V.F. Sachl 371



Off-energy-shell results for scattering by a nonlocal

potential. I?
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The importance of analyzing the off-shell effects due to scattering by nonlocal potentials is emphasized.
Analytical expressions for [-wave off-shell wavefunctions associated with Jost (irregular) and physical
(outgoing wave) boundary conditions are derived for an N-term separable potential by using a differential
equation approach. The half-off-shell and fully off-shell T matrices are expressed in terms of appropriate
Jost functions, Fredholm determinants, and transforms of the form factors of the potential. The general
results presented are then used to construct exact expressions for T matrices for Tabakin, Beregi, and
Mongan potentials. In limiting cases, each of our results can be seen to yield the off-shell T matrix for

the one-term Yamaguchi potential calculated by other techniques.

. INTRODUCTION

An awkward analytical constraint associated with the
short-range local potential is that the phase shift &,(¢)
is a continuous function of momentum %, There exist
situations where relaxation of the constraint is neces-
sary in order to accomodate experimental results, For
example, in the vicinity of an isolated compound reso-
nance, the phase shift for the resonant partial wave
develops a jump of magnitude m. The change in phase
becomes discontinuous as the width of the resonance
approaches zero, Recently, it has been emphasized by
Mulligan ¢ al, ! that this constraint can be relaxed in
going from a local to a nonlocal potential, The nonlocal
potential is thus effective in treating a much wider
variety of phenomena than that encompassed with a
short-range local potential,

One of the tasks in developing the description of
physical processes characteristic of a nonlocal potential
must be the analysis of off-shell effects due to such a
potential, We attempt to do this by dealing with an
N-term separable potential and solving for off-shell
wavefunctions with physical (out-going wave) and Jost
(irregular) boundary conditions for scattering by such
potentials, These wavefunctions are useful in determin-
ing half-off-shell and off-shell T matrices. For exam-
ple, the behavior of the irregular solution near the
origin determines the Jost functions. Expressions for
the on- and off-shell Jost functions can be employed
to calculate the half-off-shell 7 matrix. The Fredholm
determinant associated with the physical wavefunction
is used to obtain the off-shell 7 matrix. A merit of the
T matrix calculation for a separable potential based on
the wavefunction approach is that it does not involve
the evaluation of typical contour integrals associated
with the Tabakin’s? procedure, Further, the method
can be easily extended to potentials of arbitrary rank.

In Sec. II we derive expressions for the / -wave off-
shell wavefunctions by using the van Leeuwen—Reiner
approach. >* In Sec. IIT we specialize to the s-wave case,
and employ our formal results to obtain 7 matrices for

ASypported in part by the Department of Atomic Knergy,
Government of India.

"Pased in part on a thesis to be submitted by one of the
authors (UD) to the Visva-Bharati University.
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one-term separable potentials in terms of elementary
transcendental functions. In particular, we consider
potentials introduced by Tabakin® and by Beregi.® In
Sec. IV we present similar results for two~term
separable potentials, In this paper we present two such
cases, the Mongan” and Tabakin® (two-term) potentials,
Finally, we conclude by making some observations on
our results,

Il. OFF-SHELL WAVEFUNCTIONS AND
FREDHOLM DETERMINANTS

We consider the scattering of a particle by a nonlocal
potential V(r,s). Let k denote the on-shell momentum
related to the energy by E=k%+1ie, 0 <¢<<1and g, an
off-shell momentum, The radial part of the off-shell
wavefunction ¢j(%, ¢, ) relating to the physical boundary
condition satisfies the projected van Leeuwen—Reiner

equation®

2 ®
(L -0, - [ s it 0,0
dar v o
= (= q*)],(a). (1)
Here
v, 8y = 2771'sf_I Ld(cos6) B(cosd) n(r,8s), 2)

and f, (g7) stands for the Riccati- Bessel function, E‘or an
N-term separable potential »,(r,s) =% y0 i (1) i (s),
Eq. (1) reduces to
&2, 10+, ]
(7;;;2”»’“ -z ik, q,7)
N

= (k- q)) i, a7) *Z} f PO e )k, a, ) ds. (3)
0

Similarly, the off-shell wavefunction f,(#,q,7) irregular
at the origin satisfies

d* 1+1
(E;T'¥k2—'( 72‘)>fdkyq’7)

~ N .
= (R~ g%y el 2 hi(qy) +§ No B s) kg, 8)ds,  (4)

with ﬁ;(qr), the Riccati—Hankel function of the first
kind, The Bessel functions used here follow Messiah
convention so that 72}(g») =17,(q7) +i/;(g7). The function
7,(q7) stands for the Riccati—Neumann function, We
work in units in which #%/2m is unity,

ssXO
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The free Green’s functions!! appropriate to physical
and Jost boundary conditions are given below,

Gy, 7)) =GFr,r") - L}:h—j, (&7) hy(kr) (5)
with
W/R) T, Ger)y, () = 7y R )iy e1)}, 7>,
GEr,r)=
0 v <!,

Gi(r,7*) represents the outgoing wave Green’s function
and R

= (W/R) (o) 7y (R77) =y (e Yy (R}, 7 <,
Gl{r,v)= (8)

0 r>77,
the Green’s function associated with the irregular
boundary condition. In view of Eqs. (3)—(6) the integral
equations for the physical, and irregular wavefunctions
are given by

S =5 o) )
+ﬁ,(k?”)j,(k?’)]i)l”(?”)d'r’

) [ R er ) oD ) dr )y
xfo v )ik, q, s)ds, M

w;(k’q, ) Jl(q7)+k

and

fl (k,q,af):e”’/z ;l"(q’}")
N @ ~ ~
=5 2N Latenyiater = i)

vy dr o (s) fik, q, 8 ds. ®

One can also write an equation similar to Eq. (8) for
fitk,—q,7). The boundary conditions prescribed for
f(k,+q,7) have been stated by Fuda and Whiting. ¢

Br'lo-i

Equations (7) and (8) can be solved by multiplying
them by »?(#) and integrating. This yields the follow-
ing matrix equations:

AP XP(R,q)=Y"(q), 9
and

NAT(R) X (R, ) = Y (q). (10)
In these equations the superscripts P and J relate to
the physical and Jost solutions, respectively. The left-
hand subscript ¥V on A indicates that we are dealing with

an N-term separable potential. The components of the
column vectors X and Y are defined by

XF e, )=f "0 ()i, q,)ds, (1)
X{lke,q) =] "0 () ik, q, 5) ds, (12)
YR =[ "4 ()7 (as) ds, (13)
and v/ (g) :e”'/zf”v,”(s)ﬁ’(qs)ds (14)

The elements of the Fredohlm determinant A4 are writ-
ten in the form

NAS(}?) = 6{] _ _)]\éLf m/[)l(’) ('V) dr
0
X{for["]: (k"");'h (k) + ﬁ,(k?”)f(k‘l’)] o) dre
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- et [0 D), (e s eryar], (15)

and
A w©
”A‘J’(k)zc”+—kifo v )y

x [ 7T tert) - 7, (er Y, (er ) o ),
(16)
In analogy with the on-shell case treated by Coz et al, '?
the algorithms presented in Eqs, (9)—(16) can be used
to write the off-shell physical and Jost solutions, We
have
N
by, q,7)=7,@qr)+ kdetNAP(k) 1

< [TT= 70 igCer) + 5 Ger ) ) o )
= e, (r) [ i Ger Yo D), %))

naf; (R Y (q)

and
f,(k,q,’}’)

—eltr/2hs Hgv) - m‘ﬁ A{a”(k)Y, (q)
xf [7, ()7, (kr) = 70, (o), (v ) o (B )y, (18)

Here af, and aj; stand for the cofactors of yAf; and 4Aj,,
respectively,

The off-shell Jost function is defined by

q e'”'”(21+1)um
@ +1)11 r-o

fl(qu) lfl(ksq)y) (19)
We have normalized the off-shell Jost function f;{&, q)
so that when g =*F, it becomes the ordinary Jost func-
tion'® £,(¢). In terms of on- and off-shell Jost functions
the half-off-shell 7 matrix

_(&\ ik, ) = fi(e, - @)
Tl’(k’ Q)kz) -(q) L i‘n‘qfi;k) * (20)

For a rank N separable potential the off-shell T matrix
can be written as

(b q,kz)'—‘—y\xfj d'ydfyljl [)1’)17(”(’;’)

xv ik, q,v")

2 N
-4 0N P P P
ni)qdetNAP(k) ‘;—jlﬂ}‘{a{j(k)yj ({I)Yi (f’)- (21)
Equations (9)— (21) represent the basic equations for
computing 7 matrices for a separable potential of
arbitrary rank by the wavefunction approach.

lI. T MATRIX FOR ONE-TERM SEPARABLE
POTENTIALS

In order to illustrate the usefulness of the general
results presented in the previous section, we consider
the problem of nucleon—nucleon scattering in the s
state, We omit the subscript ! =0 throughout. For rea-
sons of physical interest we focus our attention on two
such potentials—the Tabakin® and Beregi,® In configura-
tion space both these potentials can be written in the
form

V{r, vy = v (@) (r’), (22)

We shall see presently, the wavefunctions as well as T
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matrices in both cases can be obtained in rather simple
analytical forms,

A, Tabakin potential

Tabakin has introduced a separable nonlocal potential
of the form (22), The function v(») is written as

v(#) = (A cosor + Ay sinar)e ™" + Ae™ %, (23)

The parameters 4y, Ay, A, 0y, oy, and X for 's, as
well as for ®s; have been given in Ref, 5.

The Jost solution for this potential can be obtained in
a straightforward way by specializing Eq, (18)tol=0
and N=1 and then using Eq. (23) for the potential. We
thus have

; Y (@) [2A03-ARY o .
Tt )= Gt ATEL salvid ¢ sined”

_ AR+ 240 1 oGy Ay .
40’1 +k 1 02+}? ]’
(24)
with

1 .
Y7{q) :mﬁ:?[ﬂ{m(zaﬁ +q%) +ig°%}

. Aalty T
+ fplay 2ot q) + 2iadq)] +—§(2r3:;zl) , (25)
and
det, A7 (k)

-1+ }\/]%(20% - 3’82) _ Aﬂ%(zai +k2)
8a,4af+rD)  8a,@af+rY

MR AAARaE+ED
200} +FD) T 4oy (4ot + kY

3

) 2

- A1 As Gtdp ayk? +_0‘712k - 20 ]
(2a%+2o/1012+a%) a5tk daj+h

A A3 [ oy +01k2+2021a2+2a31]'
4otk

The off-shell Jost functions are obtained as

N (20? + 2&1(22 + a%)LCi% + kz
Y7 (xq) (z‘ﬂkz + 24,0t A )
) — +
f(]\ yk (1) 1+ det1AJ(k) 40% + k4 0122 ¥ ]\’2 . (27)

(26)

As noted earlier the ordinary Jost functions

Fla k) =4, 1k, ). @8)

The physical solution ¢*(k,q, ) for this potential is given
by
. N i MY [ Ay e
Wy, 7) =SNGV G AP Ry J{fije
Ak + 2 Ay o Ay \ i
Lt ey

ARE+ 240
I,’ -
+—1mm—le cosay?

Al — 2 £, 0
22 R TL - 29

where
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2 2
oty 47 (1) —deta” () + (0| 21120 1)
1

Arai(2ai~kY) | Asa
J—lq—lj— - 3__22.
+ +R + a5+ Rk

4(11

2 d 2
. h ﬁﬂe +M Q/_L i )4 ]

+zkc(h)[ Ttk E§—+Lk’f (30a)

with
AR+ 2408 A

cl)==x PP S S gy (30b)
and

YP(@)=-qclg)/ (30c)

Combining Egs, (20), (27), and (28), we obtain the half-
off-shell T matrix

2) YPR)Y P(q)

2 ez —
(e, a5 %) mkq deti AP (k)

@31)
Combining Egs. (23), (30), and the s-wave version

Eq. (21) with N=1, we obtain the off-shell 7 matrix in
the form

22 YP(P)YP(g)

Tpq det,AP(R) (82)

T( p’ q, kz) =
Combining Egs. (31) and (32), we see that the expres-
sion for half-off-shell 7 matrix obtained from the s-
wave version of Eq, (20) coincides with the limit of
off-shell 7 matrix T(/),(],kz) as p —Fk. This serves as a
useful check on our expression for T(k,q, %% in terms
Jost functions, For other potentials which we consider
in this paper we shall not include results for half-off-
shell T matrices since the latter can be obtained as
T(k,q, k) =lim,., T(p,q,k%. We shell, however, pres-
ent results for Jost solutions and Jost functions because
of their particular relevance in studies of bound state
problems and half-shell reactions.

B. Beregi potential

Bergei has suggested a one-term separable potential
for which the function »(¥) is given by

p() = e o —ae e,

(33)

With the values of the parameters o, 0y, and “a” given
by Beregi it produces the characteristic features of the
Tabakin %s, potential. For the Beregi potential

, AN iar A 1 - a
f(]\,(/’q)—e —det1AJ(k) ai—?.([ (‘lz—i(]

a QoY 1 7'0(1"
X[a?—k e ol + 70 ‘ ] 34
The corresponding off-shell Jost functions are
A 1 a
flh,xq)=1- — - 35
fk,x) detlA"(k)l:cz1 Fiq OIZZFZ(]] (85)
% a 1
(s 3} + I oy + k& ‘
In Eq. (35)
A aat
S(hy=1~ -
det; A7 (R} =1 20/1(01%"”82) 2&2((1%4’/\’?)
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Aa 1 1 ]
— =t 6

The physical solution and the off-shell T matrix for the
Beregi potential are as follows: the physical solution,

M [ 1 a ]
detiAP(k)[_ajiﬂLq? a3 +q°

1 a ikr 1 ~a,r
X - e - e 1
[(a% + k2 a% + k2) a% +k?

a =agr|,
M 2]’ (37)

1P+(k, q,?’) = Sin(]’r -

off-shell 7 matrix,

N _ 20 1 _ a
T, 0, ) = et AP @ T 1~ 1

(38)
o 1 a ]
aj+g* oztgt]’
In Egs, (37) and (38), det;AP(R) is given by

Aoty A7) = ety () + o - o R

(o}

+—)‘2-—?2—7020 T —
(af + =) CY1+W

2xa ra® ] . (39)

T i TN T (@i R

IV. T MATRIX FOR TWO-TERM SEPARABLE
POTENTIALS
A one-term separable potential does not exhibit the

characteristic short-range repulsion of the nucleon—
nucleon interaction, In view of this attempts have been
made to construct separable interactions of rank more
than one, The simplest is, however, a rank two poten-
tial, Clearly, the purpose in introducing the second
term is somehow to inject the repulsive part of the
nucleon—nucleon interaction which dominates at high
energies in as much the same way as a repulsive core
in a local interaction, As noted earlier, in this paper we
shall be concerned with two such potentials, In con-
figuration space a two-term separable potential is
written as

V{r,s)=—-g()g(s) + ()h(s). (40)

A. Mongan potential

Mongan has introduced a two-term separable poten-
tial in fitting the 's, nucleon—nucleon phase shifts, For
this potential the form factors are given by

gr)=v— e 0", (41a)

h(r)= VX e*1, (41D)
For the values of the parameters given by Mongan, his
potential is a real symmetric one. Here the off-shell
Jost solution obtained by combining Egs. (18), (40),
(41a), and (41b) is of the form

1
k,q,r)=e' "+ ——r
Sk, 7) = e ST
x[Ii(k, q)e 1" + L(k, q)e™*2"], 42)
where
375 J. Math. Phys., Vol. 20, No. 3, March 1979

Ty X _ A
et )1 5o T Balad T

+ Kihz(ai—al)zf TN
401“2("‘1"‘ (12)2(a§+k Yoz + k)

I q) = Mlog+ig) NN CTRE D) .
WO U= T (@ + 4D 20(a] -9 (0] + ED (af +47)

43)

Mg (0 +79)

BRI e R e e R

and
Mg (o, +iq)

Ay (0 +iq)
Bl D = A (A T D Tar(@l T D (ol T T D)

. Ao (0 +ig) .
(04 + ap) (0] + D) (oF + D) (] +q%)
As in the case of one-term separable potentials, the off-
shell Jost functions can be obtained by substituting » =0
in Eq. (42), The on-shell Jost functions are f(x %)
=1lim, ., ,f(k,q). The physical wavefunction for this
potential is given by

(45)

*(kyq,¥)=si ’V+——_~—1
vk, a,7)=s0a7 G AP )

X[Qz(k, q)e™ 1" + Qq(k, q)e”*2" — Q4 (R, q)e**]

(46)
where
_XoBalR,q)
Q3(k,q)-—-2_22—a2+F ) (47a)
A By, q)
A | )
Qull, 0) ==L (47b)
and
Q1R q) =@y (k,q) +Qs(k, q). (@7c)
In these equations B;(k,q) and 8,(%,q) are
By(kyq) = Go(R)YF(q) - Hyy () Y (q) (48a)
and
Bolle, @)= Gy (k) Y{(q) = Hyy (&) YT (q), (48b)
with
.P = q
Wao = (48c)
_ n(a?=kY iR
G =t g @+ Y T (48d)
and
Hiy(l)=- Ay ERTR S
@I ag+a, F
i,j=1,2, i#j. (48¢)

The Fredholm determinant associated with the physical
solution can be written in terms of the Fredholm deter-
minant for the Jost solution:

det, AP (k) = det,A7(k) + R (k) +il(k)
with

N MO Ao v
PO = GE ey Yy

(49)

4
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AMAgRE (0 = ag)?

T 2aq05(0f + R (05 + B 0
and
b3 g
I(k):(a21+k2)2 +k )
Aok (g ap = B2) (@ + ap)? (51)

2010y (aq + ag) (0 +E*) (a5 +R7) "

For the Mongan case IV potential the off-shell T matrix
is given by

T(p,q,k?

~ AT I (P61, )+ Y (D)8, )], (52)

B. Tabakin potential

Tabakin has parametrized a two-term separable
interaction which fits the nucleon—nucleon data reason-
ably well, For this potential, the form factors to be
used in Eq. (40) are

g(?’) = Ye-a', (533.)

and
d* - b
h(r):Be""[ 2db
The parameters «, 3, y, b and d are defined in Ref. 8,

The Jost solution for this potential is obtained in the
form

sindr + cos d?’]. (53b)

1 - -
f(k,CI,V)Ze‘"—m[JMk,Q)e o~ Jylk,q)e”™

x cosdr +J3(k,q)e " sindr) (54)
with
Ji(k,q):—&Z’);__kf Xl(k’q), (553.)
k2
Sk, ) =ry k7)2+2d’3(b2 vt e® e,  (55b)
and
B (0% + d%)? = K3 (a2 - b))
Jy(k,q) = Zdb[(bz TR + S — KD + d4‘| xz2(%, q). (55¢)
In Eq. (59) x;’s are given
o yoxlatigf, | gt d)(p? -k + &) - 4b%k?)
xilky @) ="jr ¥ 16637 + kD2 22 (0% — &) + i
_ yBH (0% +d?) (b% - k2 + d%) - 2bok?}
200 + b)E + APH (B + ETYT + 2 (b7 - %) + dFY
(0 +d®) (B - g% +d%) + 4b%?
20{ (0% + g% + 242 (0% - ¢°) + d%}
iq®
(bz T2 ) + d4] (56a)
and
XZ(ksq)
=ﬁ[1 P (6% +d%) (02 - g + @) + 4b%g2
2a(a’ +E5) 26{ (67 + ¢7)F + 242 (b7 - ¢°) + d%}
iq?
(bZ + q2)2 + 242 (b2 2) +qt
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By* (o +iq) (b2 + d® + 2b o)
T 20(a+ BN o + ) (o + by + Y

(56Db)

The Fredholm determinant associated with the Jost
solution is

det,A” (k)

:[“me]

1+ 32{(b2 + d2) (bz _ B+ dZ) - 4b2k2}
166%] (0% + B3 + 24% (0% - %) + d%}
V(0% + d%) (b% = k? + d?) - 2bak*Hb? + d% + 2ba}
T2 (o + 02+ AP o7 + R (0 + BT + 24T (0E - KD + A}

(57)
Jost functions are obtained by substituting ¥ =0 in Eq.
(54). The physical wavefunction for the Tabakin two-
term potential is given by the expression

. 1 ca
Y*(k,q,7)=singr +m [s3lk, q)et* = s,(k, q)e™>"

+ $,(k, q)e™ cosdr + s4(k,q)e™" sindr]
(58)
with s;’s written as
s1le, ) =180, (592)
2£, (R
sy(k,q)= T kz)zﬁi 25;2((1;'?1 v (59Db)
sylk,q) =51k, q) - sy (k,q), (59¢)
and
2(d2 = b2y = (B2 + 2 2
s4(k,£I)ZZB Lfgﬁ'{;zq){k @-b) - L d ) (59d)

TR T2t (BF - D) + d)
Here £4(k,q) and £,(k,q) are as follows,

Ei(k, q) =
B{(B* +d¥) (2 - k* + d°%) - 4b%R%}
U 160+ RO + o BT < D) + i}

| RO+ @) (0 - kP4 ) + 4D 2zbk3}] vr@)
25 (02 +k2) T oL~ R + A ta

v8 a? E2(b% - k2 + d%) + 2ibk° ] -
I b)2 s s g REACRE
(60a)
and
2 2 7.2
_ Y Yo iy R P
Sak,0)= [1 T e ED T (@ T T&ﬂ_kf)] Y@
| vB B +dH (B -k +dY)
B+ DT+ 27 (B2 - R +dEL 20((a + DY+ dP)
ak? ak® ik?
T(at+bE+dt PR otk Y@ (60b)
with
q
Yf(‘l):?‘y‘_{,_fq , (61a)
and
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3

Y{(q) = (bZ +q7)2 + leiq2 (b2 _ 7) Tar (61b)

The Fredholm determinant det,A”(%) in Eq. (58) is given
by
det,AP (k)

=det,A’ (k)

+ B (0% + dP) (B2 - k% + d%) + 4b%k2 + 2ibk%}
201 (0* + E%)? + 247 (b* - E?) + d*F

N PR i A0+ d) (b - B2+ d%) - 2abk{}]
2a(@®+ 7" 2"+ (a + DY +d)
V(o +ik)

T (o7 BN [1 T TG T B + o5 — D) + Y
X§(b% +d%) (b% - k2 + d?) - 4b%?

| B0 (B2 + % + 20b) (62)
(o + b0y +d%
For this potential the off-shell 7' matrix is
2 —______2___ P _ VP
T(p) q,k ) - "qudetzAP(k)[Yz (p)‘g2(k’ q) Yi (p)gl(k) q)]-

(63)
V. SUMMARY AND CONCLUSION

In this paper we emphasize the importance of analyz-
ing off-shell effects due to scattering by nonlocal poten-
tials. We solve the van Leeuwen—Reiner equation for a
separable potential of arbitrary rank with physical and
Jost boundary conditions. Using these results we derive
expressions for half-off-shell and off-shell T matrices
for some realistic nucleon—nucleon interactions, All
results are obtained in terms of elementary transcen-
dental functions, The algebraic expressions are, how-
ever, fairly complicated. To ensure the correctness
of the results presented one can perform a couple of
checks,

(i) It can be seen that in the appropriate limit all
results for 7 matrices of this paper go over to the
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corresponding results for the Yamaguchi form
factors, 14 obtained by Bagchi and Mulligan!® by using a
relatively complicated procedure,

(ii) From Eq. (20) it is apparent that the phase of
half-off-shell T matrix is the phase shift. The phase
shifts obtained from our expressions for the half- off-
shell T matrices can easily be seen to agree with those
obtained by solving the relevant Schrodinger equation,

The results for the half-off-shell T matrices will be
useful in describing the half-shell reactions., The off-
shell amplitudes can be employed to investigate the
physical properties of three-nucleon systems by means
of Faddeev equations, In the accompanying paper we
shall present results for the off-shell wavefunctions with
regular and standing wave boundary conditions, We
shall also obtain results for half-off-shell and off-shell
Kk matrices.

!B. Mulligan, L.G. Arnold, B, Bagchi, and T.O. Krause,
Phys. Rev, C 13, 2131 (1976).

’F, Tabakin, Ann. Phys, (N,Y.) 80, 51 (1964).

3J.M. J, van Leeuwen and A.S. Reiner, Physica 27, 99 (1961).
‘M. G. Fuda and J,S. Whiting, Phys. Rev. C 8, 1255 (1973),
5F. Tabakin, Phys. Rev. 174, 1208 (1968).

8P, Beregi, Nucl. Phys, A 206, 217 (1973).

"T.R. Mongan, Phys. Rev. 175, 1260 (1968); 178, 1597
(1969).

8F. Tabakin, Phys. Rev. 137, B75 (1965).

%3, B. Sarkar, B. Talukdar, and D. Chattarji, Nucl. Phys.
A 250, 73 (1975).

10A, Messiah, Quantum Mechanics (Wiley Interscience, New
York, 1961, 1962), Vols 1 and 2,

UR, G. Newton, Scatteving Theory of Waves and Particles
(McGraw-Hill, New York, 1966),

12M, Coz, L.G. Arnold, and D. Mackellar, Ann, Phys., 59,
219 (1970).

3R, Jost, Helv. Phys. Acta 20, 256 (1947),

4y, Yamaguchi, Phys, Rev., 95, 1628 (1954),

5B, Bagchi and B. Mulligan, Phys. Rev. C 10, 2197 (1974),

Talukdar, Das, and Mukhopadhyaya 377



Off-energy-shell results for scattering by a nonlocal potential. II2

B. Talukdar, U. Das,” N. Mallick, and M. Sen Gupta

Department of Physics, Visva-Bharati University, Santiniketan 731235 West Bengal, India
(Received 2 March 1978)

The wavefunction approach to off-shell scattering on nonlocal potentials is used to obtain half-off-shell and
off-shell K matrices in terms of Jost functions and the Fredholm determinant associated with the off-shell
principal value wavefunction. The results are employed to construct exact expressions for K matrices for

Tabakin, Beregi, and Mongan case 1V potentials.

I. INTRODUCTION

In the preceeding paper® (hereafter referred to as paper
I) we solved the van Leeuwen-Reiner equation for a separa-
ble potential of arbitrary rank to obtain off-shell wavefunc-
tions associated with physical and Jost boundary conditions
for scattering by such a potential. We used these wavefunc-
tions to determine the half-off-shell and off-shell 7" matrices
for a number of realistic nucleon—nucleon interactions. In
this paper we derive the off-shell wavefunctions with regular
and standing wave boundary conditions. The half-off-shell
K matrix is written directly in terms of the Jost functions
introduced in I. The off-shell X matrix is, however, ex-
pressed in terms of form factors of the potential and of the
Fredholm determinant associated with the principal value
wavefunction (standing wave boundary condition). The re-
sults of the present paper will be useful in the studies of nu-
clear scattering reactions.’

In Sec. II we obtain expressions for the /-wave off-shell
wavefunctions. Specializing to the s-wave case we employ
our formal results in Sec. III to construct exact expressions
for K matrices for the one- and two-term separable potentials
treated in paper I. We conclude by noting that our expres-
sions for the K matrices satisfy the usual relations involving
T and K matrices.

Il. REGULAR AND PRINCIPAL VALUE
WAVEFUNCTIONS

Recently, it has been shown®* that for a short-range
local potential the physical, regular as well as principal value
wavefunctions satisfy the same van Leeuwen—Reiner equa-
< tion. For the Jost solution, however, the inhomogeneous
term differs. The regular and principal value wavefunctions
for an N-term separable potential will satisfy Eq. (3) of Ref.
1. The appropriate Green’s functions® are the following:

The Green’s function associated with the regular
boundary condition is

6o - | T N iG], > r',]

0, r<r,
(1

and that with the standing wave boundary condition is

“Supported in part by the Department of Atomic Energy, Government of
India.

P Based in part on a thesis to be submitted by one of the authors (U.D.) to the
Visva-Bharati University.
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— iwl

G (rr)=GL(rr) — S—fknm kr). @

Employing the technique of paper I we can construct the off-
shell regular and principal value wavefunctions in terms of
the matrix elements of the free particle Green’s functions
between the form factors of the potential. For the regular
wavefunction we have

¢1(k»q,")

—j@n + ‘ S Aa? (k)Y ()

k detyd 7 (k) =
x [ L’{ Gy + 7Y kD YP) dr'].

3

The principal value wavefunction can be written in the form
¥ (k,g.r)

= Jign + ‘ S Aal ()Y ()

kdetyd 7 (k) <

X [ f { = JiGkr'yp Gery + 7, (ke (RO Y dr’
— e ) [ "Rt ar | @

The elements of the Fredholm determinants dety4 “(k ) and
dety4 (k) in Egs. (3) and (4) are given by

4 /1!' “ 1 ’ H Y
VA Py =8, — 2 fo V() dr[ fo [ —Jjikr)m, (kr)

R R 1) dr |, ®

and
A 20
A, (= r n R
=5,- 2 f o) d’Uo [k yuker)

+ 7,k kD VWP dr — e~ 7
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X Jow vY’(r’)f,(kr)ﬁ,(kr’) dr’]. ©

Also a;f and g/ stand for the cofactors of y4 ;7 and 4 ;7
respectively. The components of the column vector Y are
given by

Y@= [ Pl ds ™
(4]
and
Y=Y (). (®)

In terms of the wavefunction in Eq. (4) the off-shell K matrix
is written as

K/(P’q,k 2)

N o0 e .
= 2 S0 [ [ andiemponpew? )
0

mPq =1
2 N 7 -
=——=— % Aa7 k)Y (@Y7 ).
mpgdetyA4 -?(k),gl @ )Y @Y ()
®)

The half-off-shell K matrix can, however, be calculated by
using the Jost functions in paper I with the help of the
relation

(109)

o (kY 2 filke) = fitk,—9)
K (k.g,k )—( q) mig fi(k) +f(—k)

Equations (9) and (10) represent the basic equations for
computing off-shell and half-off-shell K matrices for a non-
local separable potential by the wavefunction method.

. EXPRESSIONS FOR K MATRICES
A. One-term Tabakin potential
Using Eqgs. (27) and (28) of paper I for the off-shell Jost

functions in the s-wave version of Eq. (10), we obtain the
half-off-shell K matrix for the Tabakin potential in the form

o &
K (k,g,k?) = Y 7(K)Y (Q); ,
Thqldet, 4 (k) + (A /k)Y 7 (k)F (k)]
(11)
where the form factors ¥ “ and F are given by
o x4 2 0k
o x| LI ]y
4a} + x* ai + x
and
Fo) = 2al(\ + o)+ ax (A — o) N o a, .
4ai + x* a3+ x*
(13)

Here det,47(k ) stands for the Fredholm determinant for the
Jost solution. Note that the Jost Fredholm determinants for
all potentials which we consider in this paper are given in
paper I. The Fredholm determinant associated with the
principal value wavefunction is

det,4 7' (k)

379 J. Math. Phys., Vol. 20, No. 3, March 1979

=1—/{[ Ay (d2a2+dl(al+a2)

as+k? al + (a;, + a,)
o, ) _( o k4 2,0k oL, )
Zaz 4a?+k‘ a%—f—k’

X( o {aQal + kY] + o, e (20} — k?)}
4a} + k*

o s )+( ﬂ’xleﬂzaf)

a3+ k? 4at + k*
X( 3L+ A, -MJ(al"}‘aZ) )
8a, a?+(ax +a,)

( Ak — 2o 0 )

4ay + k*
X(dl‘f‘dz o, )] (14)
8a, ai + (a + ay)

In terms of the Fredholm determinant in Eq. (14), the off-
shell K matrix for this potential comes out to be

2Y7(p)Y 7 (g)
mpq det,.o 7 (k) '
After some algebraic manipulations it can be seen that the
quantity inside the square brackets in the denominator of

Eq. (11) coincides with the principal value Fredholm deter-
minant in (14). Thus we get the relation

K@.gk?) = 1s)

K (k,g,k?) = lim K (p,q,k 2). (16)
p—k

Equation (16) serves as a check on our expression for

K (k,q,k *) in terms of Jost functions. For other potentials un-
der consideration we shall not include results for half-off-
shell K matrices since the latter can be obtained by the limit-
ing procedure given in (16).

B. Beregi potential

The Fredholm determinant associated with the princi-
pal value wavefunction is given by

det 4 7 (k) =1+

A [ a, _L]
aj+ k|l a4+ k? 2a,

Aa? [ a, 1
ag+k*lad+k? 2
_ 2
Ma(c;t,az k Z o an
(@ + a)(ai + kN ay + k?)
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The off-shell K matrix is
U Y'Y Z(9)

. Ak Ha, — a,)
2a,a,(al + k) (a? + k2 ’

(20)

K(P,q,k 2) - - 18
7pq  det,d 7 (k) (18)
with and
, 1 a
Y7 () =x[ - : (19) 2 2
2 2 Kpagk)= —————— AYY
atx a+x 7pq det,A ”(k)z;,; e
C. Mongan case |V potential p
X[LLKYY 7 (@) — MAKYY 7 (@), j#i.
For this potential the principal value Fredholm deter- ! @ AOY @1,
minant and off-shell K matrix are given by the following
expressions: @1
det,d 7' (k) Here
A A
=T > - - Y7 (x) = ——, 22)
2a\(a; +k7) 2a,(a; + k%) al +x
Afa? —k?)
da, Aty L)=14 —LL " @23)
> > 2afa; + k)
(ai+ k% (a3 + k%)
and
A — ay M) — Aaa — K , (24)
daafa, + @) (@ + k)ad + k?) ’ (@ + a)ai +k)a +k?)
D. Two-term Tabakin potential
For the two-term Tabakin potential the relevant Fredholm determinant and off-shell K matrix can be written as,
2 2
det,d 7 (k) = det,d’ (k) — —1Z& [1 p
k) 2 ( ) (a2+k2)2 + 16b3[(bz+k2)2+2d2(b2_k2)+d4]
8b%k¥b:+d?+ 2ab) H
X{b:*+d)b*—k*+d?) —4bk? +
[r e ) @+by+d’
BB +d)b*—k*+d?) + 4b%k?] [kz vk’
2b[(bz+k2)2+2d2(b2_k2)+d4]2 2a(az+k2)
Vb +d)b*—k*+d?) — 2abk?] ]
2b(@+k)(a+b)+d?) ’
(25)
and
2 i
Kpgk)= ————— (Y7 (kg) — Y (k1.
" f,,(k)[ 7 P)pAk,q) T @pitk,g)]
(26)
In Eq. (26)
o _ ¥x
Yy = — e (27a)
Yy = b : (27b)
b +x) + 2d2(b2 — x?) +d*
gy = |14 BLO HdNO? K +dD) —dbk*] | BRG+dNb =k +d) +46°K] |y
P 16b°[(b2+ k2 +2d*(b*— k) +d*] 26 [(b2+ k) +2d%b*— k) +d*)? '
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" B b?+d’+2ab b2 +dHb*—~k*+d?)+ 4b%k? ]Yg(q)
2b@+k) L (@a+b)+4d? b2+ kP +2d¥ b2 - k) +d* 2R
27¢)
and (27¢)
& Y'a ] 1
zk, = 1 - Y
pA(k.q) [ + @1k @tk 2 @)
" B [ ak? (b’+d2)(b2—k2+d2)—2abk’]Yg(q)
b+ kP +2d¥b*—-kH+d* |l >+ k? 2b((@+b)+d?» P
(27d)

IV. SUMMARY AND DISCUSSION

We have adapted the wavefunction approach of paper 1
to K matrix calculations. Expressions for off-shell and half-
off-shell X matrices X (p,q,k ?) and X (k,q,k ?) are derived in
terms of elementary transcendental functions for Tabakin,
Beregi, and Mongan case IV potentials.

For a short-range local interaction the relation between
half-off-shell K and T matrices is given by

K(k’q,k 2) — T(k,q,k 2) .
1 — (imk /2)T (k)
381 J. Math. Phys., Vol. 20, No. 3, March 1979

The results for nonlocal potentials presented in paper I and
here are also found to satisfy this relation.
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Lie algebras associated with motion in axisymmetric

electromagnetic fields
Thomas P. Mitchell
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(Received 26 May 1978)

The existence and analytical form of a vector constant of the classical relativistic planar motion of a point
charge in an arbitrary time-independent axisymmetric electromagnetic field are established. The
components of the vector are utilized, in conjunction with the angular momentum, to construct
realizations of the Lie algebras of the Euclidean group E(2), of the special unitary group SU(2), and of
the Ladder operators of the harmonic oscillator. The charge is assumed to move in an externally

prescribed field. The formulation is gauge invariant.

1. INTRODUCTION

The Hamiltonian canonical formalism of classical
mechanics enables one to construct the dynamics of a
system in terms of dynamical variables which are
functions of the phase space coordinates. This infinite
set of variables, together with the operations of the
bilinear Poisson bracket and ordinary addition, forms
a dynamical Lie algebra, the Poisson bracket being the
realization of the abstract Lie bracket. The algebra on
the one hand is enveloped by that which allows for
ordinary multiplication of the variables in addition to
the two operations already stated, and on the other hand
it contains the set of constants of the motion as a sub-
algebra. The outstanding dynamical variable is, of
course, the Hamiltonian. Each variable generates a one-
parameter group of canonical transformations-—an
automorphism—of the dynamical algebra into itself. In
particular, the transformation generated by the
Hamiltonian, with the time as the group parameter,
describes the temporal evolution of the system.

The phase space formulation is especially appropriate
when one seeks to establish symmetry properties of a
system. Symmetries may be found in phase space which
are not at all evident from a study of configuration space
alone. Such higher symmetries of nongeometrical
origin, generally called dynamical symmetries, are of
considerable interest, being responsible for hidden
symmetries or accidental degeneracies. The symmetry
of the hydrogen atom under the operations of the
orthogonal rotation group 0O(4) is a well-known example.
MclIntosh' reviews the relationship of symmetry to
degeneracy and provides an extensive bibliography.

Although any dynamical variable can be utilized to
generate a canonical transformation, only those which
are constants of the motion, and hence whose Poisson
brackets with the Hamiltonian are zero, generate trans-
formations that leave the Hamiltonian invariant. The
Lie algebra consisting of constants of the motion is thus
a symmetry algebra, and the associated group a sym-
metry group of the system. The role of Lie algebras and
groups in classical mechanics is comprehensively pre-
sented by Sudarshan and Mukunda® and is concisely
treated by Rosen. ? It has also been discussed in several
specific applications, e.g., by Fradkin,* Mukunda, >
Stehle and Han,’ Maiella and Vitale, ® and Mitchell.’
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The construction of the symmetry algebras associated
with the classical motion of a structureless point charge
in an externally prescribed time-independent axisym-
metric electromagnetic field is the subject of this
paper. To be exact, it is assumed that the motion is
confined to the equatorial plane and, of course, that the
field configuration admits such planar trajectories. It
is shown that a vector constant of the motion which lies
in the orbital plane always exists, can be explicitly
determined, and can be used to construect realizations of
three symmetry algebras, These are algebras of the
Euclidean group E(2), the unitary unimodular group
SU(2), and the algebra of creation and annihilation
operators. The construction can be carried through
without either prescribing the functional form of the
electromagnetic field or choosing a particular gauge.
The analysis is relativistic throughout and is readily
reduced to a nonrelativistic form if required. It includes
as a special case the work of Dulock and Meclntosh!?
which is restricted to a field configuration consisting of
a uniform magnetic field in the presence of an electric
field originating in a harmonic oscillator potential.

. THE VECTOR CONSTANT
The Hamiltonian
H=c@mict + P2+ 4o (1)

is the total energy, and describes the motion of a zero-
spin structureless point charge in an externally pre-
scribed field whose scalar potential is ¢. In this ex-
pression the mechanical linear momentum is repre-
sented by P, the rest mass by m and the charge by ¢.
On introducing the vector potential, A, of the magnetic
field and the conjugate kinetic momentum p, one can
express the Hamiltonian in the form'!

2q1/2
H=¢ [anzcz+<p—gA> ] +qo. (2)

To ensure the admissibility of trajectories confined to
the equatorial plane z =0, the potentials A and ¢ must
satisfy the conditions

pA, A, A, 20 0
Az T

= et , 3)

0z fz  r ’

in which (#, 8, z) are the usual cylindrical coordinates
and subscripts denote components. The axisymmetric
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nature of the electromagnetic field is guaranteed by
omitting any dependence on the azimuthal angle ¢ from
the potentials. It is not necessary to subject them to any
particular choice of gauge. For the remainder of the
analysis the Hamiltonian adopted is the two-dimensional
form

2 2 q1/2
- 2.2 _4q 1, _a,
H=c¢ [m ct + (p, (?A’> + (ng B g) :\

+ go(r), (4)
which is obtained by setting z=p,=4,=0 in Eq. (2).

Owing to the symmetry of the Hamiltonian under the
orthogonal rotation group O(2) the kinetic orbital angular
momentum pg, conjugate to the azimuthal angle, is a
constant of the motion which will be represented by .
Accordingly the vector 1=rXp, which generates rotations
about the axis of symmetry, is a constant vector normal
to the equatorial (orbit) plane. The two-dimensional
Hamiltonian given by Eq. (4) can be written as a function
of the two variables » and p and the constant / only. A
second vector constant F can now be determined as
follows, Let

F=fr+gp, 5)

in which the two dynamical variables f and g are func-
tions also of 7, p, and ! alone. A straightforward cal-
culation shows that the Poisson bracket

(1, F]=1XF/] (6)

and hence that F behaves like a vector under rotations.
Thus F, which clearly lies in the orbit plane, is a
vector constant of the motion if its Poisson bracket with
the Hamiltonian

[F,H]=0. (M

This condition can be rendered in a simple form by first
changing the representation (5) to

F=U(r,p, e, + V(r,p, e, (8)

The unit basis vectors in the (r, 8) coordinate system are
symbolized by (e,, e;). The condition for the constancy
of F then becomes

: H BH |
{[U,H]—Vap—e}er+ {[V,H]+Uap6}ee_0 9)

or, equivalently,

aH
[W,H]+iWa =0, (10)

‘1’8

where

W(r,p,)=Uly, p,1) +iV(r,p,1), i=V=1. (11)

However, since both H and W are functions of »,p, and
{, we have the Poisson bracket

(gu_,vgli duw 8H>
PR

[W,H]z(r—"l’l
ov 2p op v

e (12)
and Eq. (10) is a first-order linear partial differential
equation which determines the function W4, p, 1) when
H is prescribed. By introducing the independent vari-
ables (», H) in place of (r,p) in Eq. (10) it is reduced to
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the ordinary differential equation

aw il
R — 1 13
dv r(r*P) V=0, (13)
in which the function L is defined by
»p ol ) <aH -
L= r-P ey o 14)
Hence, as a solution of Eq. (13) one may take
W(r, H, 1) = exp(it), (15)
using the notation
r L
b, H )= [ —Z=ar (16)

. #(r-P)

in which the lower limit is arbitrary. On combining

Egs. (16), (15), (11), (8), and (5) it is found that
rx(rxP)

r
F =2 cosy +————"siny

vL an

is a vector constant of the motion with unit magnitude.
It is similar in form to that previously established’ for
spherically symmetric Hamiltonians. The function L is
identified, on using Eqs. (14) and (4) to be the magnitude
of the orbital angular momentum
q
L=|rXP|=vP =p, ~ E?“AH. (18)
Consequently, ¥ which is the angular position of r rela-
tive to F is found for Eqs. (18) and (16) to be

b= IJ<_Z_%A9> [(H—qd>)2/(?2—)17202

¥

2-1/2
(]
Y C

and is recognized as the angular position of the charge
in its orbit. If the lower limit of integration is chosen

to correspond to a turning point, r«P=0, then the vector
F is always directed towards that point. The equation of
the orbit is found by taking the inner product of r and

F. In the particular case, e.g., in which a uniform
magnetic field Bk acts alone along the axis of symmetry,
Egs. (16), (17), and (19) serve to determine

F=(nwr-kXP)(P?+ 2mwl)?’?,

(19)

(20)

This well-known vector constant establishes the direc-
tion of the position vector of the center of the circle of
gyration relative to the coordinate axes. The Larmor
frequency ¢gB/mic is denoted by w. The guantum-mech-
anical properties of the vector defined in equation (20)
are discussed by Johnson and Lippman. *? Other closely
allied quantum mechanical results are given by Malkin
and Man’ko, ** by Katriel and Adam, ™ and by Malkin,
Man’ko, and Trifonov, '

IIl. THE LIE ALGEBRAS
On multiplying the vector F by any scalar dynamical
variable R(», p,1) one obtains a new vector constant

G=RF (21)
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[R, H]=0. (22)

It is possible therefore to adjust the magnitude of the
vector by an appropriate choice of the scalar constant of
the motion R, It follows from Eq. (7) that

7, G{]=G,, (23)
[1, Gy =~ Gy, (24)

and in addition the bracket relation
Gy[Gy, G ]=G[Gy, Gl (25)

can be readily derived. The subscripts 1 and 2 have
been introduced to denote the Cartesian components of
G whose magnitude is G=R. Three choices of the func-
tion R are now considered.

The first is to choose it to be the Hamiltonian itself,
Then Eq. (25) becomes
[Gy,G,]=0 (26)

and thus through Eqs. (23), (24), and {(25) the quantities
G4, G,, and [ provide a realization of the Lie algebra of
the group E(2) of motions in two-dimensional Euclidean
space, If as the second choice R is taken to be

R=il, i=V-1, 27)
then Eq. (25) reduces to
[Gy, Gy]=1. (28)

The identification I} =G,, I, =G,, I;=1 makes it
possible to write the bracket relations (23), (24), and
(28) in the compact form

(1, Ll =e (29)

jkm[m ’

in which ¢, is the permutation tensor. The Lie
algebral® of the special unitary group SU{2) can
accordingly be realized by Gy, G, and ¢l defined
through Egs. (17), (21), and (27). As the final choice
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one may take

R=(H-201)!? (30)

in which o represents an arbitrary constant independent
of the phase space coordinates. The bracket relations
are then

[Gy, Gy =0, (31)
[G,, 1] =Gy, (32)
{1,6(1=6,, (33)

which are those of the creation and annihilation operators
of the quantum harmonic oscillator.
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Extension theorems for operator-valued measures
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Benioff [J. Math. Phys. 13 (1972)] has shown that every consistent, countable family of positive,

normalized operator-valued (PNOV) measures p, over R" can be extended to a PNOV measure over R*™.
In this paper we show that the same result holds for arbitrary, consistent families of PNOV measures
over complete, separable metric spaces. Further we show that, while there may be no extension if the
topological conditions are relaxed, it is always possible to construct a related family of PNOV measure
spaces which: (1) Are measures theoretically indistinguishable from the original spaces; (2) Have an

extending PNOV measure. These results use developments in the theory of algebraic models of measures
as initiated by Dinculeanu and Foias [Ill. J. Math. 12 (1968)] and applied to stochastic processes by

Schreiber, Sun, and Bharucha-Reid [Trans. AMS 158 (1973)].

1. INTRODUCTION

In mathematical physics operator-valued measures
over R" and their extension to R™ have been used to
study quantum mechanical measurement and decision
procedures involving an infinite number of steps (cf,
Benioff""?), For example, consider a situation in which
a collection of observables is measured repeatedly.
This will yield a sequence of operator-valued measures
{u,,} over R". Furthermore, they will be consistent in
the sense of Kolmogorov, That is, for every » and
every measurable subset A of R" we shall have

UalA) = oy (AXR),

Hence it is natural to consider extension theorems for
operator-valued measures; that is, to investigate the
existence of an operator-valued measure p on R* which
reduces to i, on R", Benioff! has investigated the ex-
tensions of families of operator-valued measured de-
fined over countable products of R, and obtained ex-
tension theorems of Kolmogorov type for such families,

In Sec. 2 of this paper we define operator-valued
measures, Section 3 is devoted to a generalization of
Benioff’s theorem to arbitrary families of Polish
spaces; i. €., uncountable collections of complete sepa-
rable metric spaces, Finally, in Sec. 4, we extend the
idea of an algebraic model for a scalar measure (due to
Dinculeanu and Foias®) to operator-valued measures,
obtain an operator-valued version of the Bochner—
Neumark theorem, and obtain an analog of the main
result of Schreiber, Sun, and Bharucha-Reid, ¢ This
permits the elimination of the topological conditions
on the spaces over which the measures are defined. For
while there may not be an extension over non-Polish
spaces we shall see that there is a canonical way to
construct a family of spaces measure-theoretically in-
distinguishable from the originals over which there is an
extension,

2. OPERATOR-VALUED MEASURES

Let H be a fixed complex Hilbert space with inner
product (-, -); and, as before, let £ (H) denote the
Banach algebra of bounded linear operators on H
equipped with the norm topology, i, e., the topology
induced by the operator norm
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| Lilop=supllLxll 4, xcH, {x,x)=1.

I X is a set and A is a o-algebra of subsets of X, then
a function i A — [(H) is called an operator-valued
measure if

(i) p(¢) =8 (the null operator);

(ii) if {A,} is a pairwise disjointed sequence of sets
from A, then

u(iylA,) =§ 1Ay
in the strong sense; i. e., for every xcH we have
N o0
1% wtadx = u(fA) sl o

as N—, The measure p is said to be positive if, for
every AcA, 1(A) is a positive operator, i,e., for every
xcH, (uL(A,x) = 0, Furthermore, pu is said to be
novmalized if p(X)=1, and complete if u(A4) =0 implies
that every subset of 4 is a member of A.

We remark that if u(A)=6 and PC A is A-measurable
then u(B) =0 for positive, operator-valued measures,
Hence, the statement “u-a.s.” is well defined. Finally,
if 4 is also normalized then, for every xeH with (x,x)
=1 we have that p (A)={(u(A)x,x) is a probability mea-
sure and p(A)=0 if and only if p,(A4)=0 for every unit
vector x of H,

In view of the above we see that a positive, normal-
ized operator-valued measure (called henceforth a
PNOV measure) is a natural generalization of a prob-
ability measure, It is, therefore, natural to ask if
extension theorems of Kolmogorov type can be proved
for PNOV measures, We have already noted that this is
a problem of interest in quantum theory,

3. AN EXTENSION THEOREM FOR PNOV
MEASURES

For each o in a directed set 7, let ¥, be a nonempty
set with o-algebra A4,. Assume that the ¥, are increas-
ing and the A ,-measurable sets, when imbedded in ¥,
for 8= o, are Az;-measurable, We may then ask: Under
what conditions will a family of PNOV measure ., ex-
tend to a PNOV measure u over U, A,,
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We now state and prove the following result as an
answer to the above,

Theorem 1: For each te T let X, be a Polish space
(i. e., a complete separable metric space) and let A4,
denote the o-algebra of Borel sets of X,. Assume that
for each nonempty finite subset V< T there is given a
PNOV measure 1 on A,=11;,,4, Also assume the u¥
are consistent; that is, if UC V let ny, ,: Ay —Ay be the
canonical injection so that for every Ac Ay

w(A) =1 (ry ,(4)).
Then there exists a PNOV measure u on II,.-4, which
agrees with each u” on A,.

In order to prove the above theorem the following two
lemmas are needed.

Lemma 1: Theorem 1 holds if the expression “PNOV
measure” is replaced by “probability measure.”

For the proof of this lemma we refer to Ash,®

Lemma 2: Let the sets and o-algebras X, and A,be
as in Theorem 1. Let m be a probability measure on
A=1,.y4. Then, for each A€A and ¢> 0 there exists a
finite subset U of T and a set Be A, =11,,y4, such that,

|ma) - mU(B)| <.

Proof of Lemma 2: First we observe (Ash,’ p, 194)
that for each fixed Ac A there exists a countable subset
T, = (ty, 5,15, + »+) of T and a set Ac Ay, such that

(@(t),te T)eA if and only if (a(?), te T,)€A,
Hence m(4)=mT(4), where, for any subset S of T
we define the measure »° on Il,, s A4, by the formula
mS(Cy=m(C XMyer\s X¢).

But m% is a finite measure and hence regular from
above, Therefore, if we define for eachn=1, 2, ., the
set

A’n:agj[(a(tl)’ Tt (l(t")) x i-:In]dXt“"

then we see that ;3,,;),5",1 and 51 /1,,:5. Hence

lim 1Ty (4 ) =mT(A), and thus

| mTa(A) - m%(A,)| <e,
for large enough n, By the construction of the sets X,,,

if we set U={t,t;, +++, £,) and B=U,,{a(ty), alty), ---,
a(t,)), then mY(P)=m"(A,) and the result is proved.

Lemma 3: Let A be a 0-algebra of subsets of X; and
assume that for each xc¥ there is given a finite positive
measure (i, on A, Then, there exists a positive opera-
tor-valued measure p on A such that (u(A)x,x) = 1, (A)
for every A< Aand x€# if and only if

(1) (a2 < [ (V2 + [y ()12,
(i) pguld) = [ o[ *pe(4),

(111) Hey(A) + pyey(A) =20,(4) +21,(A)
for all x, yH, complex «, and AcA, Also, for every
Ac Athere is a constant k4> 0 such that

(iv) we(A) < & llxll2,

For the proof of this lemma we refer to Willansky, 8
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Proof of Theorem: Let x = H and assume lixii=1, For
each nonempty, finite subset V of T define the probabil-
ity measure up)(+)={(u"(-)x,x) on A,. Then for the
family {u;'}v Lemma 1 is applicable; hence there exists
a probability measure p, on I, .74, such that u}(4)
=l (Ty, «(4)), where p,, . is the canonical injection of
A, into A,

Now, let x be any element of H, If x=06 set u,=0,
and if x # 0 set u,=I1x0% L 4y, Thus, applying Lemma
2 we have that for every acZ, x and yeH, A in A and
€> 0 there exists a finite subset U of T for which,

L 4) - pd®) ] <e,
|1 alA) = 15 (B | <,
*) A - pRY]| <¢,
| Beuy(A) = pY4(BY[ <€, and
| Uemy(A) = 19y (B) | <,
where F is as in Lemma 2.

Hence we see that
(D) ey (A) < p,(B) + 26
< {[udENY 2+ [uSEN A + 2¢
< {lu A) + eV + [y (A) + e 2R + 26
and so, letting e — 0,
rw(A) < {2+ [, (T2,
Ity QY2 < L (A2 + [y (]2
(1) | 1asld) = | o] Pue(d)]
<[ aeld) = e (B) |+ | Wl (B) = | o P ul(R) |
+ a2 uEy - | offu )<+ 0+ |all

i.e.,

and, as e — 0 the right-hand side goes to zero, Thus,
iax(A) = | o4 (A).
(1) | 00y (A) + ey (A) = [200,(4) + 201, (AV]|
< (@) = 1L (B + | 1 y(A) = 15y (B) ]
+ {1, (B) + 1Sy (B) - [215(B) + 25(B)]]
+2{ pU(B) - ue(A)| + 2| 5(B) ~ py(A)| < 6,
and as € ~ 0, we have
Lrag(A) + g y(A) = [20,(4) +20,(A) =0,
Finally,
(1v) ell® = (A 2 x> = WiR) —e)= — ¢
so |1x[|? = u(4)= 0,

Thus, by Lemma 3, there exists a unique PNOV
measure y for which {u{-)x,x) =u,(-). The topological
conditions on the X, were used in two places: First in
Lemma 1, the scalar-valued extension theorem and then
in the approximations (*). As is well known (cf.
Wegner') these conditions are essential to the existence
of the extending measure in the scalar-valued case.

4. ALGEBRAIC MODELS FOR PNOV MEASURES

In this section we (i) define algebraic models for
PNQOV measures, thereby extending the idea of Dincu-
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leanu and Foias to this case, (ii) give a harmonic-
analytic result for PNOV measures, and (iii) give an
extension theorem for PNOV measures which is an
analog of the main result of Schreiber et al.

Let (X,A, i) be a PNOV measure space. In order to
carry out the formulation of an algebraic model for
(X, A, 1), or u, we define the space L,(p). A function
fi X— 2, A-measurable, is said to belong to L,(u) is
there is some finite number M such that for every xeH

JIF2dp, < Milxl|2

The smallest value of M which satisfies the above will
be denoted by |[fll3. We remark that the simple functions
are dense in L,(u). Furthermore, ! fl,=(1f131/?is a
norm for L,(u).

Proposition 1; Ly(u) is a Banach space.

Proof: Suppose {f,; is Cauchy in Ly(u), Then, there
is a subsequence {f, } such that 1 £, — 1, Il <27

Define
K
gK:E ]Li 1—-f;q|’
fa1 *

and

«©

g=2 oy~ Fy

Then

13
lglz < 20 o = ol <1

Hence, for any x&H,

Sla|Pdu <lixll?,

where, as before, p,=(ux,x). We now apply Fatou’s
lemma to the measures u,;

Slgdu, <lixll2,
Therefore,

Ji'i +,>;{ (j;'m —f"i)

converges almost surely [u], Call the limit element f,
Then, given any €> 0, there is an N for which m, n>N
implies Ilf, = f,li; <e. Hence, for each xcH,

JIr=flPau < e 24, - fl du, <lxll,
Thus feL,(u), and £, — f in the Ly,-norm,

We remark that the space L,(u) is not, even if ¥ is
two-dimensional, a Hilbert space,

To prove Proposition 3, in which the prototype
algebraic model for a PNOV measure is given, we shall
need a fact about the structure of L,(u).

Proposition 2: The simple functions are dense in
Ly(p).

The proof is omitted, being exactly as in the case of a
scalar-valued measure,

Definition 1: A function ¢: I'—~ L (H) is called a PNOV
Junction if

(i) ¢(y) =1, if y=e - the identity of I', and
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(ii) for every N and choice of v, « -+, weTl, 24, -,
2,€Z, the operator 3, 12,2,¢(y;v7)) is positive, Then
for each x€# the function ¢,(y) ={d{y)x,x) is positive-

definite,

Proposition 3: Let T'*={f;X ~ Z|f is A-measurable,
Ifl =1} and define ¢*: T'* — [ (H) by the formula

02 (f) = [ Fdpy, s
Then
(i) the linear span of T'* is dense in Ly(u)
(ii) ¢* is a PNOV function,

Again, the proofs are immediate, that of (i) following
from Proposition 2,

We can now consider the idea of an algebraic model
for an operator-valued measure,

Definition 2: An ordered pair (T, ¢) where T is an
Abelian group and ¢ is a PNQV function defined on I'
will be called an algebraic measuve system,

Definition 3: An algebraic measure system (I, ¢) is
said to be an algebraic model for the PNOV measure
space (X, 4, u) if there is an injective homomorphism h:
I' — I'* such that

(i) the linear span of %(T) is dense in Ly(u), and
(i1) 6() =fhG) du.

Thus every PNOV measure space possesses at least
one algebraic model, namely (I'*, ¢*), Furthermore,
every algebraic measure system is the algebraic model
for some PNOV measure space. Indeed, we have:

Theovem 2: Let T" be an Abelian group, and let ¢ be a
PNOV function on T into /(H), Then, when I' is endowed
with the discrete topology there exists a PNOV measure
v on G, the (compact) dual of T', for which ¢ is its
Fourier—Stieltjes transform; that is for every yeT and
x, vEH

<d)(7)x9y> :f(;(}/’g) dux. ys
where (-, -) denotes the duality relation on I'XG,

Proof: Fix xeH, and assume llxll=1, Then ¢, is a
positive-definite function on I" and p,(3) =1 if y=e,
Hence, there exists a probability measure v, on the
Borel o-algebra of G such that (cf. Rudin?)

¢x(“/) :_/;; (}/,g) de,
Now, for any xcH, define

0, ifx=6,

”x”2v(x/irxlr), if x#86,

We claim the conditions of Lemma 3, Sec. 3, are satis-
fied. Clearly conditions (ii) and (iv) are satisfied. Con-
dition (iii) follows directly from the uniqueness of the
Fourier—Stieltjes transform in the scalar-valued mea-
sure case, To establish (i) we proceed as follows:
Define the complex measure (for each x, yeH)

1 .
Ve,y= Z[ Vis = Vemy H1 (Vrdy = Vx=iy)]o
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Taking the Fourier—Stieltjes transform of v, , we have
] (Vx, y) = é[(bxﬁy - (bx-y + i(¢x+ly - ¢x-iy)]!

where 7 denotes the Fourier—Stieltjes transform, and
therefore

¢xw: ¢r + ¢’y + j (Vx, y) +j (Vy, x)o
Hence upon inversion,
Vx+y: Vx + Vy + Vz‘, y + Vy,x"

Now, V,,,(4) is a nonnegative number for every mea-
surable set A, So, replacing x +y by x +ay, we have

— 2 ~ R
0= mey_Vx‘Lla) v, + OVt OV,

and putting v =v, ,/v,, we obtain |v, ,|*<v,v, There-
fore, (v, )2 <vl/?4pir2,

From the above we conclude that there exists a
PNOV measure v on G for which

(W(A) x,x) = v, (A).
Therefore,

() %,x) = (v,8) dv,;

and

(PO, v Zfo(v,g) ave

We remark that Neumark® proved a similar result
using a different definition of ¢, namely that of an
operator of positive type, Indeed, the two theorems
together show that the definitions are equivalent,
Neumark’s paper, which appeared in 1943, uses unitary
dilations of one-parameter families of operators. It
seems that his paper marks the first appearance of this
method of proof, This impression is reinforced by
Mlak, ! who credits Neumark with the introduction of
this important idea.

We now see that associated with every PNOV mea-
sure space (X,A, ) is the model (I'*, ¢*) which is like-
wise a model for (G, /). The relationship between
(X, A, 1) and (G, 8, v) is given by Lemma 4,

Lemma 4: There is a measurable map $: X —~G
and a mapping A: Ly(u) — Ly(v) for which A(f)ep=f
(u - a.s.) for each feL,(u),

Proof: First the mapping A is constructed using the
fact that T, is a subset of both L,(v) and Ly(u)., For
each y&T,, regarded as a function on X, define the func-
tion A(y)=(+,y) on G, Since iA(y)|=1 it lies in Ly(v)
and in fact, since (I'*, ¢*) is a model for (G, 3, v), the
set A(T") will generate L,(v), Hence, for any L,(u)
sequence of linear combinations f,=3;.1Civi approxi-
mating f we define A(f,) =¥r.1CH(+,vP). That {r(f,)} is

Cauchy in L,(v} is immediate from the fact that,

Jordu=0"G) =/, (-, ) dv.

Hence we set A(f) = ™ a(f,) in Ly(v), Now, define
P: X - G via (@), ) =v(x) for every 1T and xcX. To
see that A(f)°¢¥=S(1L ~a.s.) we set, as before,

f,,::;{ Ciy/} with f=1 7 _ Then we have
M S o Blx) =“Z} Ci( ¥ o )
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=ZiCI0), v]) =21 Clvi ().

So A(f,) o ¥{x) and f, lie in the same L,(u) equivalence
class, so that A{(f,)°¥=/f,(u-a.s.). Since f is the L,(n)
limit of the f, we see that likewise X(f)op=f(p~a.s.).

Before considering the extension theorem, we make
one additional remark. Suppose f=X,, the character-
istic function of the A-measurable set 4, Then, since
() p=f we see that A(x,) is a.s. [p] the characteris-
tic function of some set Fe 8, provided u is complete,
Hence ¢™'(B) is a measurable subset of X and
ulAapt(P)) =0 since

Xa = Xe~1(B)y-

Now let T be a directed set indexing an increasing,
consistent family of PNOV measure spaces {(X, 4, u o},
teT, Then there is a corresponding family of models
(T}, ¢,)}, teT, where I;=T% and ¢,(y) = [+du, for all
y&T;, Further, the family {(T}, ¢,)} is increasing:

[ C T, if s<t, since A,C A, for the same pair (s,f), In
addition the family is consistent in the sense that ¢.(v)
=¢,(y) if s<tand yI,, Thus the set I'=U, T, is a
group and the function ¢: I" — £ (H), defined by ¢(y)
=¢;(y) for yeT,, is a PNOV function, since each ¢, is a
PNOV function, Furthermore, by Theorem 2, the alge-
braic measure system (T, ¢) is an algebraic model for
the PNOV-measure space (G, 8,v), where, as before,

G is the dual of T and ¢ is the Fourier—Stieltjes trans-
form of v.

Now, each of the algebraic measure systems (I}, ¢,)
also yields a dual group G, with Borel o-algebra 8 (G,)
{where T, was given the discrete topology) and a PNOV
measure v;, whose Fourier—Stieltjes transform is ¢,,
so that (X, A,, u,)and (G, 8(Gy),v,) are conjugate as
in Lemma 4 by means of the mapping ¥= 9.,

Furthermore, since I,C T, for s <! we have that G, is
topologically isomorphic to a quotient group of G,
Likewise, G is topologically isomorphic to a quotient of
each G,. Denoting by ¢, the canonical mapping of G,
onto G we can define, for each f, a o-algebra of G

B,={e(E) | E€ BGHL

The family of o-algebras 8, of G is directed in the
sense that 8,C 8, for s <¢, Furthermore, for each ¢
we can define a probability measure v, over 5, by
choosing v, to be that unique measure having ¢, as its
Fourier—Stieltjes transform, The family of measures
v, will, like y,, be consistent.

We summarize the above remarks in Theorem 3,
which is a direct generalization of the development in
Ref. 4,

Theovem 3: Let (X, A, 1), t€T, be an increasing
family of PNOV-measure spaces indexed by a directed
set T. Assume the family of PNOV measures {u,} is
consistent. Then there exists an increasing sequence
of PNOV-measure spaces {(G, 8;,v,)} over a group G for
which

(i) the family {(G, B, v;)} has an extension,

and

(i) if for each f=T i, is complete then there exists a
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mapping ¢,: X — G which is /5,-measurable, and for each
Ag A, there is a Bc B, for which u,(Aay;!(B))=0.
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Representations of a para-Bose algebra are given entirely in terms of the operators of a single Bose field.
Incidentally some types of boson representations of a nonsemisimple graded Lie algebra of the three-

dimensional Lorentz group are obtained.

1. INTRODUCTION

In a recent contribution' we have produced the repre-
sentations of para-Fermi operators of any order of the
statistics using only the operators of a single Fermi
field. Representations of para-Fermi fields has been
obtained earlier by Ramakrishnan and coworkers®
employing the elements of Clifford algebra and by
Kalnay and others?® utilizing the boson operators and
suitably restricted subspaces of the boson vector space.
It is the aim of this paper to obtain the representations
of para-Bose operators of any order of the statistics
using only the operators of a single Bose field.

Green' was the first to give an ansatz for representing
the para-Fermi and para-Bose algebras by forming
linear combinations of several different commuting
Fermi fields and anticommuting Bose fields respective-
ly. Using Green’s ansatz here we obtain the representa-
tions of a para-Bose algebra by forming the required
different types of anticommuting Bose fields using
certain combinations of suitable number of operators of
the same basic Bose field.

In Sec. 2 we show how one could get two sets of anti-
commuting Bose operators having »n operators each and
hence construct para-Bose operators of second order
of the statistics. In Sec. 3 we generalize this approach
and demonstrate how one could manufacture any re-
quired number of para-Bose operators of any order of
the statistics starting from a single basic Bose field.
In Sec. 4 the results of Secs. 2 and 3 are shown to pro-
vide some types of boson representations of a nonsemi-
simple graded Lie algebra of the three-dimensional
Lorentz group.

2. PARA-BOSE OPERATORS OF ORDER 2

Let us take 21 +1 operators {b, 1j=1,2,..., 2n+1}
and their Hermitian conjugates of a single Bose field
obeying the well known commutation relations

I.bj) blz]:[b;y b;]:o,
U’j; bl:]Zij’
j,k=1,2, ..., 2u+1. 1

Let us now construct the unitary operators U, and V, as

U, .—_exp[i (%)1/2 ! + bl)] ,
Vlzexp[@)”z(b;_ bl)].
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It is easily seen that U, and V, satisfy the relations

{Uls Vl}: {Ul’ VlTJL:{UL Vl}: {UlTa VI}':O (3)
Then the set of operators {0 1 j=1,2,..., n;a=1,2}
defined by

b =Ub,,,  bMT=UD],

BB =V b ., b;”T:VIb:W_d, (4)

j:1329"-7 1,

form two anticommuting sets of boson operators such
that

[65, 6 1= (65", 6y*'] =0
[b;a), b;a)f]zéjb’ (5)
B0, b = 1, b}

=, b2 = oM, 0P =0,

Jyk=12,..., n; a=1,2.

ki

Let us now follow Green’s ansatz* to arrive at the de-
sired operators of the para-Bose algebra of second
order statistics, Thus defining

@) _ptd | p2 _ (m\M? bbb
ﬁj—j+j—explz (1 1 Fa1

(i 1/2
+exp|:(§> (b] - bl):‘bmm’ ©

1/2
B —p Ty b‘jw:exp[— l(%) (b + bl)]b;u

1/2
cexpl(3) 0u-00]o 0

/
j:1a27'°'a n,

it is easily seen that these satisfy the general para-Bose
commutation relations

[Bj’ {BL ﬁ,}]:Zijﬁp
[Bj’{ﬁk’ BI}]:Oy (7)
j R I=1,2, ..., n

Green® had suggested that such para-Bose operators
{8} can be expressed as suitable direct products of
boson operators and Pauli spin matrices. It is empha-
sized that here we are constructing the para-Bose
operators using only the elements of a single Bose field
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without any recourse to other types of entities like the
Pauli matrices. Also we do not have any restriction on
the boson vector space on which the above operators
{8} act, unlike the situation noticed in the works of
Kalnay and others.?

3. PARA-BOSE OPERATORS OF ANY ORDER

Now we shall generalize the above procedure to con-
struct a set of » para-Bose operators of order p.

In the last section we constructed two anticommuting
operators U, and V, from b, and b]. As it is well known
a third unitary operator anticommuting with both U, and
V, can be found as U,V,.

If we now consider operators {b,, 671 j=1,2,...,m}
we can define the operators analogous to those of Eq.
(2) given by

U, :exp[i(%)l/z (b7 + bj)] ,
Vj:exp[(g>1/2(b}—b_,-)]’ (8)

j:1,2>°'°;n)

such that
U, vii={Uu, vit={vt, v,}={Uu}, vi}=0,
v, v,l=lu, vil=lv, v,] 9
=[U,, Vi]=[V, V.=V, Vi]=0, j=#k.
Jyk=1,2,..., m,

From these operators of Eq. (8) we can construct the
following mutually anticommuting unitary operators:

A =U,, A=V,

r-1
A2r-1: IE[I (UIVZ) Ur’ (10)
r.1
Azr: 11;11 (UIVZ) V”
r=2,3,...,m,
and n
Agpa =1L (UV). (11)

These and their Hermitian conjugates obey the relations
{Ag’ Au} :{Aay AL}
:{AL’ Au}:{A;’ AZ}:Oy

a, b=1,2,..., 2m +1.

a+y, (12)

To construct a set of #» para-Bose operators of order
p=2m or 2m +1 we have to take the set of operators

{pff={p,1j=1,2,..., [p/2]+pn} (13)

of the basic single Bose field, where [p/2] denotes m,
the integer part of /2. Any m operators of the set
{6} may be used to construct the required p mutually
anticommuting operators {A} of Eqs. (10) and (11).
Choosing the first m operators {b,1j=1,2,...,m/} for
this purpose as in Eqs. (10) and (11) let us further
define

bi®m=A_b

a ' me(a-1)n+i?

b T=A"b! (14)

oV ms (- lyneg?
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j=1,2,...,n; a=1,2,..., p.

As it can be seen easily these {(b{* | j=1,2,...n)
la=1,2,..., p} constitute a set of p anticommuting
sets of boson operators obeying

[b4%, 6] = 1o, by =0,
I.bj(a), bgaﬁl — 6jk)

b, byb=1bt, bt
= {bj('a)t’ b)(zu)}:{bj(a)*! bliu”}:O’
L R=1,2,..., 0 a,u=1,2...,p, (15)

Ol*“,

analogous to Eq. (5). Hence by Green’s ansatz we can
easily find the para-Bose operators of order p as

i
) _ (o)

e

BY= 25 b{, (16)

o:

I

j=1,2,..., n

Then using Eqs. (8), (10), (11), and (14) the explicit
expressions for the para-Bose operators of order 2m
or 2m +1 are found to be

gem = ril z”—ll;ﬁll exp(zb; - Z*b,)J
Xexpli(n/2)M 2 (b1 + 010, 100 s
+expl(1/2) /2 (0] = 5)10m, 00y mshs (17)
and

m -1
gEm = i’-l[[I exp(zb’ ~ z*b ):I
7 1=1 4 !

r=

x{expli(m/2)" /2 (b1 +b,)]b

ms(2r-2)n+j

+ expl(ﬂ/z)nz (b: - br)]bm+ (2r~1 )m.j}

+ i’"[lI:Il exp(zb] — z*bl)]bmzmn”., (18)
i=14,2,...,n,

where z=(n/2)"/2 (1 +i). These operators {8/’ j
=1,2,..., n} are easily seen to obey the para-Bose
commutation relations (7). Thus we have obtained a
set of n para-Bose operators of pth order statistics
using only the operators of a single Bose field.

4. REPRESENTATIONS OF A GSO(2,1)

It is known® that the generators {Ql, @ss Q3} of the
three-dimensional Lorentz group [SO(2, 1)] obeying the
Lie algebra relations

[Ql’ Qz]: - iQa) [sz Qs]:iny [st Ql]:iQ2$ (19)

Can be represented in terms of any pair of conjugate
para-Bose operators (8, B") of any order. Following
Ref. 5 we have then

i

Q1 = Z (ﬁTﬁT —BB)a
Q,=3(B"8"+ £B), (20)
Q;=3(8"8+ BN,
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Now it is evident that each of the representations of
{8} obtained above provides a representation of sS0(2, 1)
Lie algebra.

A graded Lie algebra involving both commutators and
anticommutators has the general form given by

lme Q ]:Efl Q

CIARSYS o)

{WM Wu}: %} S;\nu Qm

m,n=1,2,...,D; \,u=D+1 D+2,.,.,D+d,

Let us now observe that the set {Q,, @,, @,, W,=8",

W, =8B} generates such a graded Lie algebra of SO(2 1)

[GSO(2, 1)] with the structure constants {f! , F%, S}

given as follows. The only nonvanishing elements of
L1, m,n=1,2,3}are

fos ===t
fa==r5=4 (22)
f132: —f231 ==

The constants {(F*, | u,Ax=4,5)1 m =1, 2, 3} represented
for each n as a 2X2 matrix are given by

0 -i/2 0 i/2

-1/2 0
—ij2 o0 ) T F

i/2 0 7 T3 0 1/2
(23)

Similarly the constants {(S, | », » =4, 5)| m=1,2, 3} can
be represented by the matrices
~-47 0 4 0 0 4
Sl = ’ Sz = s SS = .
0 4 0 4

F,=

(24)
4 0

Following Ref, 6 one can introduce a metric tensor
{gx, 1 B, 1=1,2,..., D+d} of the graded Lie algebra
along with metric tensor {hp, | myn=1,2,..., D} of the
underlying Lie algebra in the following manner:

— SYFl fa —
hmn“*? >T/fmq n;*’lnm’

— S n r
gmn _hmn—)xf ;FmXFnu_ nm?

(25)
=2 2 (F, ST,

m)t ua) - ghu’

Emu=8um=0,

m,n=1,2,..., D3\, u=D+1,..., D+d.

Since in our present case of GSO(2, 1) defined by Eqgs.
(21)—(24), D=3 and d=2, gis a bx5 matrixand k is a
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3 X3 matrix. A graded Lie algebra has been called
semisimple® if
detllnll+0,

detllglt=0. (26)

Then according to what is called the C-theorem in

Ref. 6 for each semisimple graded Lie algebra obeying

(26) there exists necessarily an antisymmetric C such

that
S™=CF

m?

m=1,2,..., D. (27
From Eqs. (23) and (24) it is easily seen that there does
not exist any such matrix C in the present case of the
given GSO(2, 1). Hence the above GSO(2, 1) is non-
semisimple. One can also see this directly by computing
the determinants |l gll and il # |l using Eqs. (22)—(25)
and noting that detil gll = 0 contrary to the required
condition (26). Thus in view of the representations of

{[3} considered in previous sections we find that we have
here examples of some types of boson representations
of a nonsemisimple GSO(2, 1).

In conclusion it can be recalled that when the order
of the statistics of the para-Bose system reaches in-
finity we arrive at a Fermi system.”® Hence it would
be interesting to speculate on the fact that one could
arrive at a Fermi field by utilizing a single Bose field
to create para-Bose fields as above and allowing the
order of the statistics tend to infinity. A recent review
of other so-called boson representations of fermions is
found in Ref. 9.
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(I

We give an analytical procedure to calculate 3j-coefficients (;, *_,,

I. INTRODUCTION

The purpose of this note is to give a procedure to
evaluate the 3-j coefficients (, ! 2/) for avbitrary
integer /. j is also an integer such that (I, /, 2j) satisfy
the standard triangular equality. The tables® for 3-j
coefficients give values only up to =8, j=4. Although
the standard recursion formula can be used to evaluate
the above mentioned 3-j symbol in a specific case, the
technique for evaluation we shall present is often more
convenient in both analytical work as well as for practi-
cal computations,

In the next section we discuss the basis of the general
method. In Sec. III, we give the necessary formulas.
Finally, in the Appendix, we discuss the results for
{=4, which is sufficiently nontrivial to illustrate the
power of the method.

I. THE GENERAL METHOD
We begin by considering the product X, (m) given by

X '(m):(z I 2j (l ! 2]'),
i m-mO0/\00 0

where the 3-j coefficient (! { 2/) can be evaluated by
elementary methods, 2

112\ _ S 2U=27)1  \V? 21 (1+))
(0 0 o>_('1)l ((2l+2j+1)!> GO (=51~

(2.2)

(2.1)

Using the relationship between the spherical harmonics
and 3-j coefficients, we find

(=1)"

(m):mfdﬂ Y;km(e, ¢)P21(C059) Ylm(e’ (;b).

1

(2.3)
Now, we define
—1)m
X, (m, a)= '(%L)T) dQ Y% (6, $)P, (coso)
XYlm(9,¢‘a)’ (2' 4)
X, [(m, a)= exp(~ ma)X, ,(m), (2.5)
and
S2[X, (m, a)]=-imX, (m, a). (2. 6)

From the addition theorem for the spherical harmonics®
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%) for arbitrary integer /.

4
@7:_1) zn) Yr(6,0)Y, (6,9 ~a)=P (cosw),

where

cosw = cos?0 + sin?d cosa . (2.7

We then have

(2.8)

By differentiating the equation (2. 8) with respect to
@ 0,2,4,..., 2(/-1) times and then setting o =0, we
obtain ! linearly independent equations for X m.(m). The
corresponding equations involving the odd derivatives
vanish since Xm.(— m):Xl,j(m). We can also easily
verify that equations involving derivatives of higher
order than 2(! — 1) do not yield new equations.

The linearly independent equations can be written in

the compact matrix form
AX =3V, (2.9)

where X and V are /X1 column matrices whose nth
elements are given by

X,=(-1yX, (n), (2.10)
a2(n-1)
V,=5,%, (0)+(- 1)"<a—aﬂm 1,,],(&))&:0 (2.11)
and A is a [ X! matrix with
Ay, =mP*D, kon=1,2,..., 1L (2.12)

The solutions for the required 3-j coefficients are con-
tained in the equations

X=3A71V, (2.13)

HI. INVERSION OF A AND THE EVALUATION OF V

The matrix A is a special case of the Vandermode
matrix A defined by

Akn:x:-ly (3'1)
where x; are arbitrary.

If we identify

x,=n, n=1,..,,1 (3.2)
we have
A=A, (3.3)
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Since detA is a homogeneous, antisymmetric poly-
nomial of order (I ~1)/2 in the x,’s, we can easily
verify that

detA =1 (x, ). (5.4
B> n
The cofactor matrix C,, (A) of A is given by

an(A):(_l)’“k '.Hj (xi _xj)

1zi5j=1

i, itk

x 2 K, Xy eoe X, (3.5)
1 V2 1-

v}
Izyyzppe o2y, =1

i€ (v} "
where the summation in (3.5) is a simple homogeneous
polynomial of order (I —n) in the x’s that has no multiple
factors and does not contain x;. If we denote these poly-

nomials by S

1n,k?

Sia = by Xy Xy v X, (3.6)

vt Y1 1-n

lavlavz-'-avl_jal
k& (v}

the inverse of A or A is given by
(Anl)kn = (A-l)kn
= (= 1) i[:Ij (%, — %) (x, —xj)'llel_n'k. (3.7)
Izizh=j =1

The polynomials S, , , can be obtained from the sym-
metric polynomials S™

S(m)____i—x/ (xm)

by noting that
s,ﬂz(l—n)'lifzj,l(- 118 g,
where S, are homogeneous polynomials of order [ -n»
like the S, , but containing x,, and then
Simr= ZZ-}W (-1'xS, .-

i=0

(3.8)

=n={ s

(3.9)

Further for x™=(n%)", the symmetric polynomials
S'™ are given by the Bernouilli numbers. The product
term in (3. 7) which depends on k is given by

2R2

A+ -k (3.10)

inj (xi"xk)-l (xb—xj)-lz
t)i?izajzl
In order to evaluate V, we need to evaluate the
derivatives
azlz

e . Letting z =cosuw,

P (cosw)
a=0
a2m

B i)

(2m)1 5P (2)
as0 (m) MylHaleoopt ! dz°

! 92z “1<1 34z \ “2
21 da? 41 3a%)

oL 2%, \"
(2¢)1 3a®?
where the summation {1} extends over all nonnegative
integers u; such that $ju,=m and s=73 k; <I. In (3.11)
we have retained only the even derivatives of z with

respect to a, since the odd derivatives vanish when
a =0, Substituting

, (3.11)

@=0
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azrz .
32" la=0 = (- 1)"sin®¢ (3.12)
and
&#P(z) | (+s)!
dz® | 2°(1=s)!s! (3.13)
in (3.11), we find
il (=1™(@2m)! (1 +3)1
——P {(z = ! ! o
" I( ) 020 [%% Bplpglees p ! 25(1~ s)1s1 sin“*g
x[21] 1 41]™ 2L [(2g)1] e (3.14)

When we use (3. 13) to evaluate {{32""/3a2" |1, (a)},.,

occurring in (2.11), we obtain terms involving
J sin®**6 P, (cos8) d=2mJ,, ,,. (3.15)

The integrals J,, ,; are nonvanishing only when s > and
they can be evaluated as follows,

S (= 1)s!

st,zj:t=o (s = D1 Lyt 25 (3.186)
where I, ,; are the well known integrals®
1 : .
22720 1 (£ + )1
_ 2t _ ! .
Izt'zj_/:l X pz;(z)d?—([_])'(2[+2]+1)‘ (3.17)

Thus, finally we obtain

(2n-2)1 « [21]7™[a1]™2. .0 [@2g) 1] ™e
V =6 X (0)-
n nl l.]( ) 2 {w} IJ’I!“‘Z!"'HQ!
(1+s)!
25(1 = sYIst “2s.25° (3.18)

From (3.17) and (3. 18), it is straightforward to calcu-
late X and hence the required 3-j coefficients (} } 5%).
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APPENDIX

We consider the special case /=4 and compute all the
3-j coefficients. In this case j=0,1,2,3,4. From (3.7)
and (3.18),

TABLE 1. Values for Jy ;.

7 1 2 3 4
S
0 2 0 0 0 0
4

1 4 -1 0 0 0

18 16
z 7 ~1fs %5 0 0

32 32 32 32 0
3 % 1% 385 ~ 3003
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TABLE 1II.

Y 0 1 2 3 4
n
1 -3 Nk -3/ 2710601 57143 £/10/2a31
2 1 S ETAL - 371001 ~ V57143 $T0/2431
3 -1 NSV Lvz/T001 -$57143 V1072431
4 1 - 57T 4 3/I001 —£/57143 %+ 102431
-8 & ~35% The required Jy, ,; are easily computed from (3. 16),
4 lee 13 L and (3.17). These are given in Table I.
-1 3 180 80 180
A= . .
£ -& L -5 T (A1) Finally 951ng
s 1 1 i 0 1 2 3 4
35 180 a0 1260 49
4 Jl_1 2 g 2 7
1 207 4], . [y e [0 o4 J =% V5/TT $42/1001 %V5/143 V1072431
Vnzonlx4’j(0)_§(2rz-2)z(23) TR IA
. " NI
and the equations (2.9) and (2.10), we find the values
ENCERS} (A2) for (% % %) which are given in Table II.
(2= s)1s1 J2s,2;
and hence M. Rotenberg, R. Bivins, N. Metropolis, and John K.
Wooten, Jr., The 3-j and 6-j Symbols (Technology, Cam-
bridge, Massachusetts, 1959).
See for instance, A. Fdmonds, Angulay Momentum in
Quantum Mechanics {Princeton U, P., Princeton, New
(A3) Jersey).
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3E. Whittaker and G. Watson, 4 Course in Modeyn Analysis
(Macmillan, New York, 1945), Am. ed. Cambridge U.P.,
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Semiclassical perturbation expansion of the multichannel

scattering matrix
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A semiclassical perturbation method for the inelastic S matrix is described. The channels are transformed
into a set of the eigenstates and it is assumed that the transition between them is small. The perturbation
is the matrix which diagonalizes the coupling matrix. It is shown that such a series is independent of h;
hence the limit h —0 of the S matrix can be calculated. A special case of the weak coupling is also

discussed.

INTRODUCTION

The semiclassical limit of the elastic S matrix is
obtained by expanding the solution of the Schrodinger
equation in a power series of the Planck constant.!? It
was therefore natural to generalize the idea to more
than two particles® and to the set of multichannel equa-
tions. *”® However, the method becomes combersome
in such applications. For example, in the simplest case
of only two coupled equations (two state approximation)
Stuckelberg? obtained the semiclassical limit of the
S matrix after making several assumptions on the
potential, With such assumptions the system of two
coupled second order differential equations can be
transformed into a single equation of the fourth order.
The semiclassical S matrix is then obtained from the
asymptotic solution of this equation. However, the diffi-
cult part in such a procedure is tracing the asymptotic
solution across the Stokes lines. It is obvious that if we
have three or more channels, the analysis is even more
difficult since it would involve, under the most favorable
conditions on the potential, the equations of the sixth or
higher orders.

To overcome the difficulty, different models were
proposed all having one underlying idea in common:
Instead of solving a set of the second order equations,
a physical model of collision is developed which is
described by the equations of the first order. For a two
state problem, the system of equations can then be
transformed into a single equation of the second order
for which the theory of asymptotic solution is well
developed. For example, Landau’ and Zener® assumed
that in the inelastic collision of atoms the motion of
nucleus is classical while at each instant of time the
electrons form an eigenstate of the time independent
electronic Hamiltonian (adiabatic approximation)., The
trajectory of the nucleus is linear in the region of the
largest transition probability (near the crossing point),
From the time dependent nonrelativistic Schrodinger
equation they obtained a set of the first order equations
in the time variable, the solution of which gives the
transition probabilities. Since then there has been
different derivations of the basic equations, briefly
summarized by Delos et al.? Among them is also the

3)0On leave of absence from R. Boskovic Institute,
Zagreb, Croatia, Yugoslavia.
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momentum space formulation of the inelastic
collisions. 1©

We can make two criticisms of this approach:

(a) For a two channel problem the method gives the
semiclassical limit of the S matrix from the set of the
first order equations. However, the sequence of
approximations leading to the equations is largely based
on the physical intuition. In other words, by making
approximations it is difficult to estimate the contribu-
tion of the neglected parts and subsequently making this
contribution smaller in a systematic manner. (For
comparison we recall that in the ordinary WKB method
the index of quality! provides the estimate of accuracy
of the approximation.) This is essential when a non-
typical transition occurs, e.g., transition in the case
of no crossing.

(b) Generalization to more than two channels is not
straightforward. A typical example of a many channel
problem is atom-rigid rotor or atom—diatom reactive
collision,

In this paper we describe another approach for ob-
taining the semiclassical solution of the multichannel
equations. Let us first look at the simplest way to solve
the multichannel equations: the distorted wave expan-
sion. The coupled set of differential equations is trans-
formed into an integral equation which can be solved by
iteration!! and the series is absolutely convergent,
However, such a series is of little use in the semi-
classical limit since, as it is shown in Sec. 1, it is
essentially a power series in 7', (It should be empha-
sized that the coefficients of such a series are also
functions of # but they are finite in the limit 7 —0.)
Since the distorted wave expansion is also a power
series in the coupling constant, the rate of convergency
is essentially determined by the relative magnitude of
7 and the off-diagonal elements of potential matrix, but
in general, because of such form of expansion, the first
few terms of the series are not accurate representation
of the solution of multichannel equations.

The idea is now to diagonalize the coupling matrix
and use the diagonalization matrix to transform the
wavefunction into a new function, which we call the
eigenchannel wavefunctions, Since the diagonalization
matrix is a function of the coordinate, the eigenchannel
wavefunction satisfies a differential equation which in-
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volves explicitly the diagonalization matrix and its
derivatives. As shown in Sec. 1, we can solve the new
equations by iteration of the appropriate integral equa-
tion. These are two essential features of the new
series: (a) We obtain a series in which the individual
terms are finite in the limit #Z —0; (b) the coefficients
of the series are entirely determined by the diagonaliza-
tion matrix. The last feature is important since it im-
plies that the coupling matrix is no longer explicitly
present in the solution of the multichannel equations but
is represented through the matrix which diagonalized it.
For this reason we prove in Sec. 3 that the diagonaliza-
tion matrix is uniquely determined by the coupling
matrix.

Since the coefficients of the series are independent of
K, we can obtain the S matrix in the limit #Z — 0 (the
semiclassical limit). In Sec. 2 we discuss this limit for
the first iteration of the integral equation. An explicit
form of the semiclassical S matrix is obtained in which
a new matrix 7, defined in Sec. 1, plays the role of the
coupling matrix. The matrix 7 is related to the coupling
matrix through the diagonalization matrix, as shown in
Sec. 3, but very often it can be calculated by the per-
turbation method directly from the potential matrix. In
Sec. 5 we show how this is done for the case of de-
generacy in two channels with the other channels being
well separated.

It is essential now to point out that in the derivation
of the semiclassical S matrix we did not make any a
priovi assumption on the coupling matrix and the num-
ber of channels. We have only restricted the limit to
the first Born approximation; therefore, we can sys-
tematically improve the result by calculating higher
order Born terms knowing that all of them are finite in
the limit 7 —0.

By this method we calculate in Sec. 4 the S matrix for
a two channel case. Besides taking only the first Born
approximation of the eigenchannel wavefunctions, we
also make some approximations to the 17 matrix which
do not essentially alter the final result for the S matrix.
It is shown that the diagonal matrix elements of 7 are
exactly zero while the off diagonal are negligible except
in a small vicinity of the crossing point. Because of
such behavior of 1, the integrals are not difficult to
calculate. We find a general agreement with the usual
LSZ formula; however, even on the level of the first
Born approximation several new results are obtained:
(a) Corrections due to the repulsion of the potential
curves is taken into account; (b) reflection amplitude
due to the change in slope near the crossing point is
predicted (this only effects the elastic elements of the
S matrix); (¢) change in the normalization factor of the
LSZ inelastic amplitude, i.e., in the extreme semi-
classical limit the factor 2 which appears in the LSZ
formula for S,, is replaced by 27/3,

The method described in this paper is essentially a
perturbation method and is analogous to the distorted
wave expansion. As such it has some drawbacks; it fails
for large transition amplitudes, but it also fails in the
case of weak coupling. This case is discussed in Sec. 6,
and it is shown that the two methods are complemen-
tary. A special case of the “forbidden” transitions is
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discussed, and it is shown that the transition amplitude
can be calculated from the first order Born
approximation,

Solving the system of multichannel equations by
diagonalizing the coupling matrix has been previously
used for the systems where the coupling matrix is con-
stant, e.g., for the square well potentials, ' or where
the diagonalization matrix is constant, e.g., spin-3—
spin-3 coupling. '* The method was also used, under the
name of “the sudden approximation, ” as a model for
describing the atom-rigid rotor collision. ! In this
model, the spacing between the energy levels of the
rigid rotor is neglected and the centrifugal term is
assumed to be degenerate in all channels. The diagonal-
ization matrix is constant in such a case. Therefore,
developing a method which is based on a coordinate
dependent diagonalization matrix can be regarded as a
natural extension of the just described applications.
However, the new result is that the perturbation series
obtained by solving the set of equations for the eigen-
channel wavefunction is semiclassical, i.e., the coeffi-
cients of the series are finite in the limit # —0.

1. THE THEORY

A system of n multichannel equations is in the matrix
notation

Y'=py, (1.1)
where
=V 1 +1) g (1.2)

1,.2

The channel energy matrix #* and the centrifugal
matrix are diagonal while the potential V is nondiagonal.
In many cases the off-diagonal elements of V are small
compared to the diagonal ones, i.e.,

pi,]’ <<pm,m;

therefore, we can use a perturbation method for solving
the system (1.1). By defining the perturbation

p=potepy, (1.4)

where p, is diagonal, the solution of (1.1) can be ob-
tained from the integral equation, *!

(1.3)

€ B r
Y=Yyt ook f K(r, 7)) by (Vi) dr’ (1.5)
(o]
being a power series in ¢, From the series (1.5) we
calculate the Jost functions, and their ratio gives the
S matrix. ! The Jost functions and the S matrix are
given as a power series in e¢.

There is an inherent weakness of the power expansion
of the type (1.5). By putting # dependence of p into ¢
we notice that (1.5) is a power series of the form

Y=a,+ % a, +E%a,+. -, (1.6)

and in the semiclassical limit % — 0 the leading coeffi-
cients in (1. 6) are very large; therefore, the series for
 (hence for the Jost functions and the S matrix) is
poorly convergent. Approximation of the S matrix with
only the first few terms from (1.6), therefore, has no
meaning.
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Another approach for solving (1.1) is proposed here.
It is based on the perturbation expansion but with the
coefficients independent of %. To obtain such a series,
we define a matrix A which diagonalizes p

A7) PN AF) =1(0), (1.7)
where A is a diagonal matrix. Let us define

@ =A"yA (1.8)
and find the equation which ¢ satisfies. By taking
derivatives of ¢ we obtain

@' =xrp+2lg7, ATA J+ [9, ATA]

+2[ATTAY, AP A |22 +eU (1.9)

where

[X, Y] =XY-YX (1.10)

If we define a new matrix 7 by
A'=An, (1.11)

the system (1.9) simplifies to
o' =xp+ 2l ]+ o, W]+ (o, n']+2[n, onl=re +eU.
(1.12)

The matrix A is independent of %#. We also notice that
A~I? and ¢’ ~Ji™"; hence, €U, being of the order ™,
can be treated as a perturbation. In an analogy to (1.5)
we obtain the integral equation for ¢,

w=¢w*;kquKWﬂﬂUUWwﬂ (1.13)
where
E(r, 7Y =50 fy (7)) =15 (7)) f5 (7). (1.14)

The functions in (1.13) and (1. 14), with an index zero,
are the solutions of Eq. (1.9) with ¢=0, i.e.,

Pr=ng,, (1.15)

and they define the eigenstates of the multichannel
problem. The matrix 7, defined by (1.11), can be re-
garded as the coupling between such eigenstates.

The unperturbed solutions in (1.13) and (1.14) are
different according to their boundary conditions

@,(r)—~0, -0,

Fo () —~exp(F ikv), (1.16)

,}f_,oo’

where & is a diagonal matrix of the channel wavenum-
bers. It is now straightforward to show that (1.13) is a
power series with the coefficients independent of 7,
i.e.,

@ =a,+ (eha, + €V ay+...; (1.17)
therefore the series is more suitable for the semi-
classical analysis of the S matrix than (1.6) and is con-
verging much faster. The rate of convergency is in
fact entirely determined by 7 and its derivatives.
The Jost functions are determined from
p=-exp(ik7) j* + exp(—ik¥)j~, (1.18)

)
Y — >,

and if we assume that &, #k;, ¢{+j for all i and j, then
we can find A with the property
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ETA(V):I’ (1.19)
and we have
= 0TS~ T (1.20)
By replacing ¢ in (1.13) by (1.20) we find
.j*:_jgx—%- /e'lf fENUYdy (1.21)
0

and again this is a power series with the coefficients
independent of .

The S matrix, defined by
S=explin(l +1)/2]R* 2 (i) k™ 2explin(l+1)/2],
(1.22)
can now be calculated using (1.21).

In the derivation of the S matrix (1.20) we have
assumed (1,19). As it will be shown in Sec. 3, the
matrix elements of A, which connect the channels with
degeneracy, are constant in the limit » — «; hence

limA () =C, (1.23)
Y o
where C is some constant matrix. The asymptotic
wavefunction ¢ is then related to the eigenchannel wave-
function ¢ by

lim¢=ClimpC™? (1.24)
o 7o

from which we obtain the Jost functions
Ji=exp(¥ ikr)C exp(x iky) jEC™ (1.25)

where j% are given by (1.21). The S matrix is now
S=explin(l+1)/2R2CjH(j) " C ™ 2explin(l +1)/2),
(1.26)
where we have formally replaced
exp(ikr) — 1. (1.27)

For simplicity, we assume from now that C =/.

2. DISCUSSION OF THE EXPANSION SERIES

As we have shown in the previous section, the wave-
function is given as a power series in €#; therefore,
the S matrix (1.22) can be estimated in the limit /i — 0.

Let us first notice that in the limit /i —0, the function
U simplifies. We notice from (1.9) that eU contains
terms with ¢ and ¢’. Since ¢ ~%°and ¢’ ~/™', we have

eU~2[¢", 1), -0 (2.1)
and the Jost functions are
j*:jéi% }e'lf FE, @] ar. (2.2)

a
The first integral is finite; however, the second needs
little attention. For » —0, the function jj, diverges as
¥7'm and, for the off-diagonal element, the integrand is

S P ~¥iIm oy —0, (2.3)
To offset the infinity, we assume
U g~ ¥ M7 v =0, (2.4)
which ensures the finite value of (2. 2).
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Taking the limit #Z — 0 of the S matrix can be much
simplified in the first Born approximation of (1,13).
This can be done without loss of generality since A is
independent of %, In the Jost function (2.2) we formally
replace ¢ by ¢,, and, because eU is small, the inverse
of i~ is approximately

()~ AL = i)™ [Ty gl ant(io)™

The S matrix (1.20) is now up to the second order in €

(2.5)

S ~explim(l +1)/2) 12j:{1 - i(kis i)™ [, woln, w5)dr}

X (3 k™ 2explin(l +1)/2] (2.8)
The first integral can be neglected because
R [ T popgndr =5k @3 | T+ 00D = O(R), 2.7
where we have used (1,19), and the S matrix is
S ~explin(l+1)/2]k1/2 [l = i(kj3je)™ | oqnegdr]
X (G R 2 explin(t+ 1)/2]. (2.8)

The solution of (1.15) is arbitrary up to a constant
matrix so that j; can always be defined with modulus 1,
In that case

S~Sy 2RV~ ik [ T oonpgdr) RS, (2.9)

where 5, is the S matrix for the eigenstates (1.15).

The last result is the semiclassical approximation of
the S matrix in the first Born approximation. However,
the equation needs further discussion.

Let us first show that in the semiclassical limit the
diagonal elements of the integral in (2.9) goes to zero
as /. We first replace 7] by

o, 1]+ L@g, 171+ 2[1, @gnl,

In other words, instead of taking the limit (2.1), we
derive (2.9) in the most general form. Since ¢, is
diagonal, it is easy to show that the diagonal elements
of (2.10) are all zero, except the last one. We have

= 2095~ 2[4, 1) (2.10)

EUn,nZZZ‘/(@?‘(?S)anIM (2.11)
J
and the diagonal elements of the $ matrix are
Spn =S+ ik j " o%@% = M ym;, dr . (2.12)
The second term goes to zero as ¥ because n,; are in-

dependent of /.

The S matrix (2.9) is not unitary. It also appears that
it is not symmetric, since the integral in (2. 9) contains
a derivative of only one ¢,. However, as it will be
shown in the next section, the matrix 7 is arbitrary up
to 2 constants, where » is the number of channels.
From this fact we show that, in the semiclassical limit,
(2.9) is symmetric.

Any off-diagonal element of the integral in (2.9) is

M=~k [ "0, o ar. (2,13)
By partially integrating (2. 13) we obtain

M, =-k'o® nlmg)m' + k! / (¢° nlmq)‘,’n+(p n;, 0% dr.
(2.14)

The first term is zero since A’ —0 for v ~ « and ¢9 -0
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for » — 0, The last term does not involve derivatives of
@° and is of the order 7. We have approximately

Mlm Nk;lfo (p(l)lnlm(’D?" dr.

Since 7 is arbitrary, we can always define it with the
property (as will be shown in the next section)

(2.15)

'y

k
Tllm:-—-ﬁj T]mz; (2.16)
hence we have
M, ~_k‘lj (pmnmlggo dvr=M, (2.17)

The S matrix is therefore symmetric in the semi-

classical limit, under the assumption (2.16). Formally,
the S matrix can now be made unitary by
i i -
S=8§1/2 1+3M)<[—7M) Strz, (2.18)

3. DISCUSSION OF THE DIAGONALIZATION
MATRIX A

The essential role in the Ssemiclassical expansion
(1.11) is played by the matrix A, defined as

AT pA =, (3.1)

where p is symmetric and in the limit » — « is diagonal.

The matrix A is not uniquely determined by Eq.
(3.1). This can be easily checked if we replace A —AB
=C and require that the new matrix also diagonalize p.
We get

ATPA =X~ CpC=BAB =1 (3.2)

hence the matrix is undetermined to a matrix which
commutes with A, i.e.

Bx=2XB —B,,(}, —/\)_, i,j=1,2,..., 1. (3.3)

In (3.2) we neglected the case whereby B interchanges
the order of eigenvalues.

For A, #A; the matrix B is diagonal with arbitrary
matrix elements; therefore, # matrix elements of A are
arbitrary. However, for certain values of v, two or
more eigenvalues can be identical in which case B is
nondiagonal and more than » matrix elements of A are
arbitrary. Since degeneracy usually occurs for isolated
points of », we can fix A for an arbitrary » and con-
tinue it over the whole range. In such a case, A is uni-
quely determined if only n of its values are arbitrarily
chosen. Let us therefore prove that the continuity is a
sufficient condition for determining A uniquely, up to
i constants.

Before giving the details of the proof, let us show on
one example how A can be obtained. The matrix p is

poy +1021)

-k, (3.4)
where (I +1) and £* are diagonal and V is nondiagonal
with the elements that go to zero for » — « faster than
¥, In general, the off-diagonal elements go to zero
faster than the diagonal ones, but there are cases
where'®

Vig~a f(n), v =<, (3.5)

where f(¥) is some function independent of i and j.
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The matrix #* is constant and in general nondegener-
ate. Under these assumptions we can find A for » — «
by a perturbation method. The matrix p can be written
as

P:P0+€P1, (3- 6)

where p, includes also the diagonal elements of V. The
eigenvalues of p are then approximately

A=p, + O(?), 3.7)
which is easily proved by noticing that
dax oD/o
=% o, e, (3.9)

de ~ "D/ on

where D =det(p ~ ). If we take (1.17) into account, we
can write

A=I+eA,, (3.9)
and, using (3.1), we get an equation for A,,

poA1+P1:A1po, (3-10)
the solution being

4], =—Li— [4,],,=0, (3.11)

biy=Di !
which goes to zero at least as Py .o In the case of degen-
eracy, say k2= k% and I, #1,, the element [A,],  goes
to zero,

rzpm,n"'oi Y=o (3.12)

because of our previous assumption on the behavior of
Dy for v —eo, If [, =1,, then

l.Allm = __pm___

sV

2 (3.13)
and goes to a constant value if we assume (3.5). It goes
to zero if p,, , vanishes more rapidly than either of the
diagonal elements of V. For V=V,  the perturbation
method fails and a more general procedure should be
used for finding A.

In this simple example, we have shown how the ma-
trix elements of A are determined if » parameters are
arbitrarily chosen. In our case, this was the choice
(3.11). It is now necessary to show that by fixing A at
some point 7, we can continue A to all other values of
¥, In other words, by assuming we know A(r,), we must
show that A(r,+ A) can be uniquely determined.

We can approximately write

A7y + )~ A1) + A4 (7,), (3.14)

and, to prove our statement, we must show that A’(x,)
is entirely determined by A{r,).

To obtain A’, we first take the derivative of (3.1)

DA +DPAT=AA+AN, (3.15)
and assume that
A=A, (3.16)

where 7 is a matrix to be determined. Replacing A’ in
(3.15) by (3.16), we find

AZPA+p=nA+ N, (3.17)
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for which we obtain

N =2 ) =X 6, — [ATpA] (3.18)
Fori+j
[A™prAl, .
ni,j:——x—p_—x]“ (3.19)
i~ N

hence the off-diagonal elements of 7 are uniquely deter-
mined by A(7,).

We still have to obtain the diagonal elements of 7. For
i=7j in (3. 18) the left-hand side is zero; hence 1; ; are
arbitrary. However, we can find them by using the fact
that » elements of A are arbitrary. For example, we
can choose such A that (2.16) is satisfied. Let us show

that such a matrix A satisfies
A=pAT (3.20)

and define~s 1, which ensures that the S matrix is sym-
metric. A in (3.20) is the transpose of A.

If we assume (3.20) the matrix elements of 7, given
by (3.19), are

. ki[x‘TP'A]i,j
i, i Kj—hi ’ (3021)
and by interchanging ¢ and j we find
[Apal; k;
B =kt = (3.22)
TATEIN =N, Ry h

which is the required condition (2.16), Therefore, the
matrix A must satisfy (3.20) if the S matrix should be

symmetric. It follows from (3. 20) that
AA =k, (3.23)

and, since A is diagonal in the limit » — «, we obtain

A—RM2 y e (3.24)
being the limit of A of the type (1.23). Hence, the
symmetric $ matrix is

S=explin(+1)/2]j"(j) explin(l + 1)/2]. (3.25)

We can now obtain the diagonal elements of 1. By
taking derivative of (3.23) we find

A'A+AA =Tk + T =0 (3.26)
from which it follows
n =0, i=1,2,...,n, (3.27)

thus concluding the calculation of the n matrix.

With this we also conclude our proof that the con-
tinuity is a sufficient condition for determining A () for
all » if A(v,) is fixed.

The set of equations

A=A, (3.28)

where the matrix elements of n are given by (3.19) and

(3.27), and the equations
M:kilANP'A]i,n (3.29)

obtained from (3. 18) by setting i =j, form a system of
nonlinear differential equations which can be integrated
numerically. The condition (3.27) ensures that the con-
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dition (3. 23) is satisfied for all » if it is defined for the
initial point » =7,.

In practice, it is more useful to define a unitary A
matrix, designated by U. The matrix A, defined by
(3.20), is then related to U as

A=Ukr/2, (3.30)

4. ONE EXAMPLE

Let us show on a simple example of a two-channel
problem how the theory is applied. It is assumed that
P> Py, fOr ¥ — 0,

The eigenvalues of p are given by

Moo= PUSLE L 4y, - byl + 4051, (4.1)
and the matrix elements of A are

ag=ppl(0 b P +p3171 i=1,2, (4.2)

ay == N0 = b P+ 5177 i=1,2, j=2,1,

where we have for simplicity assumed the unitary A
matrix.

The elements of the coupling matrix 7 are

n;,; =0, =12, (4. 3)

and

(ng—Pu) d plz .
(pzz _pu)z +4p12 d’}’ pzz —Pn

From (4.1) we deduce that unless p,, =0, the eigen-
values of p cannot be degenerate. They are approxi-
mately degenerate if for » =7, we have p,, =p,, and
P12 ~0. In this case

(4.4)

12 - 7721

(4.5)

Near r =7, the elements of A change rapidly. In the
region v > v, we have approximately

A p~bry AA=N =X, =2Dg,.

ayy ~ 0y, ~1,
p (4. 6)
|alzl~]a21|~!——L-[<<1, >,
while for » <, they are
~ay, ~1,
b (4.7)
lay [~ |t | ~ | 72— <1, 7<7,

In other words, from »> ¥, to ¥ <%, the matrix
changes from the unit matrix to an exchange matrix,
i.e., the matrix which interchanges the order of the
eigenvalues.

The appropriate 7 matrix, which measures the cou-
pling between the two eigenchannels, is approximately

for r> 7,

|7712| ’ i _;Eiz;; , «1 (4.8)
and for ¥ <7,

e ~ | 5 pz—f,%: | «<1. (4.9)
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In both cases it is small. However, for »=v it
becomes

_u_i_’za ” (4.10)

| e | = |

having a large value for a small p,,. Therefore, all the
transition between the eigenchannels occurs in a small
neighborhood of ¥ =7,

If pi, can be neglected, then »=r coincide with the
maximum of |9,,| and (4. 10) is its value. The shape of
7. is therefore a Lorentzian curve with the width

Av -—-8|__pJ.2.__
11"p22

(4.11)

In the vicinity of ¥ =7, the matrix element 7n,, can be
approximated by

pl _p/ 1
Pl S o E e,
R T et (4.12)
where
e=LPh () (4.13)

2Dy,
We have neglected p/,.

The S matrix can now be calculated. We will assume
approximation (4.12), and for the eigenvalues (4.1) we
obtain

Ale Nﬁii’lz(l ) (4.14)
where
Ez(p]_l""‘t’zz)/zw (4. 15)

In our discussion we take a more general form of the
S matrix than that given by (2.9). Instead of taking the
limit #Z — 0 as described in Sec. 2, we calculate the
most general S matrix in the first Born approximation
and then obtain the limit # —0. This procedure will give
more insight into the nature of the semiclassical
approximation,

The matrix M define by (2.13) is

M=k [ = @o(l@gn]+ 2loo, 11+ sl@g, 0]+ [0, o)) dv’

(4.16)
It can easily be shown that, for a two-channel
problem,
(¢, 1?1=0, (4.17)
and, using (2.14), we obtain for (4.16)
M=k™ [ "[20m00 = 2094+ @o1@e1 ~ ¢on*)] dr
(4.18)
The off-diagonal element M, is therefore
My, =3k f: ((P?l @3 - @303 Iy, dr, (4.19)
and the diagonal one,
M“_Ie'1 f o0, 0, (¢ -9Pdr, j=1,2. (4.20)

To calculate the matrix elements (4.19) and (4. 20)
we use the WKB solution of (1.15), which is for a one
turning point problem?

%:Zk”z)\"/“cos(f'x‘/zdr’—n/4); (4.21)
7o
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hence the matrix element M,, is
M, =2(ky/ k)2 f:drnlz sin(f:zké/zdr’— fr:)x}/zdy’),
(4.22)
where we have assumed
Ay =2, (4.23)

since most of the contribution comes from the vicinity
of r=7r,

With the approximation (4.12) and (4. 14) we finally
obtain

: ® de 22
M :251n¢>f cos< - 12
12 0 . 1+e2 1/711—/’22[[71/2
€
xf de '(1 +e'2)1/2>
o
where

- .
b= J 725 AL 2 4y JT:S 7\1/2 dr.

(4.24)

(4.25)

We have assumed (2.16), in order that A/ matrix be
symmetric.

The integral can be integrated in the complex ¢ plane.
By defining the cut along the imaginary ¢ axes, starting
ate==+i, we find

M, =2exp(-1C/2)[7/2 +o(C)] sing,, (4. 26)
where
C=pl/ | bl = bi| P (4.27)

and
N dE . 1/2
o :[ a1 sin(C{lnle + (€2 = 1) /%] —e(e? = 1)*/2}),

(4.28)
Since
C~nt, (4.29)

most of the contribution of 0 comes from ¢ ~0 so that we
find the limit

limo=- 7/8.
h=0

(4.30)
The function ¢ is shown in Fig. 1.

We can now calculate the diagonal elements of M.
Starting from (4. 20) and using (4.21), we obtain

05
04+

-o

03

T

0.2

Ol

1 1 1 1 1 1 1 A 1

L
0 2 4 6 8 i0C

FIG. 1.
Sys.

The correction function o for the inelastic amplitude
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o3|
0.2+

ol

1 1 1 1
0 04 08 12 16 2C

FIG. 2. The correction function w for the elastic amplitude

i

AT — i U)éz_ph' / i de
My =~ 2 Prs 7\} 2 B 1+ [cos(az—al)—ll

(4.31)

where

€

2
2y dx(1+ 20,

Oy — Gy = Qb - =
2 1 0 [Py = DI I D72
(4.32)
In (4. 31) we have neglected the oscillatory terms
a; +a, and 2a,. The remaining integrals can be cal-
culated as in the case for M,, with the result

1 Iphh=pll [ . m
M“—Z plzxi—fz— —2-—exp(—17(,/2)(§

+ 0 Jeosp, ~ 2w(c) cosgbo} ,

(4. 33)

where C and o are defined by (4.27) and (4. 28) respec-
tively. The function w is defined as

w(C)=C .),,:, dx sin{C{x(x® = 1)*/2 + In|x + (x2 = 1)*/2]])

(4.34)
and is shown in Fig. 2.
Similarly, it can be shown that
My, =M,, (4.35)

under the assumption that @, + o, and 2o, can be
neglected.

The results for the M matrix, given by (4.26) and
(4. 33), were obtained under several assumptions; it is
assumed that (a) the WKB solution of (1.15) is accurate
(which is not the case when 7 is near the turning point
of x,), (b) pj, can be neglected, and {(c) we can use
linear approximation of p,; and p,, near »=y,. To im-
prove results, we can use more accurate (e.g.,
numerical) solution of (1.15) and take exact n matrix
instead of (4.12). However, even the approximate re-
sults (4.26) and (4. 33) describe the essential features
of the scattering matrix. In particular, they give cor-
rect oscillatory behavior of S;,, first noted by
Stuckelberg® and the exponential decay. ™ *® In addition,
corrections due to the repulsion of the eigenchannels
near r =, are also included through the functions o and
w.

As has been noted in Sec. 3, the diagonal elements
of M are small compared to the off-diagonal ones. From
(4.26) and (4. 33) we find that this is true provided C is
small, in which case

[ My /M| ~h (4.36)
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However, in the semiclassical limit, the constant C
is large, hence the matrix element M,, is small, being
of the order

[My,| ~exp(-7C/2) ~exp(- Z™") {4.37)
while the diagonal elements M ;; are of the order
(M| ~7. (4.38)

Therefore, the elastic matrix elements of M are
much larger then the inelastic ones, although the
former are also small in the limit #Z — 0, This is asso-
ciated with the two physical phenomena. The semi-
classical particle approaching the target in the channel
1 notices only the potential A,. Where the two potential
curves A, and A, come close, the change in the slope of
both is large, due to their repulsion. The particle can
either be reflected, because of the sudden change of
slope or it can tunnel to the channel 2, because of the
proximity of the two channels. Since the tunneling
amplitude is of the order (4. 37), the most dominant will
be the reflection amplitude, being of the order 7%.
Therefore, the elastic amplitude M,, is given as a sum
of the amplitude for a particle to be reflected from the
“crossing” point and the amplitude for a particle to
tunnel to the channel 2 and subsequently tunnel to the
channel 1,

5. PERTURBATION EXPANSION OF n

As we have shown, the matrix elements of 7, apart
from the diagonal ones which are exactly zero, have a
Lorentzian shape near the point of degeneracy of two
eigenchannels. The exact shape cannot be simply deter-
mined from p, and we either have to integrate the set
of equations (3. 28) and (3.29) or use the perturbation
expansion. The second choice applies only if the the off-
diagonal elements of p are small compared to the differ-
ence between the channel energies. In this section we
show how this fact is used to develop the perturbation
expansion of 7,

The off-diagonal elements of 1 are

[Ap’A);;

ST oY
and if we use (3. 6) together with (3.9), we easily find
[Ap'AlL; ~[ps)i; +elp{+ pyAy - Aspgl,, (5.2)

Since we assume A;# ), and taking into account (3.7),
the matrix element 7,; is

.4 __ by
dr pjj—pii

The diagonal elements are zero.

Mij (5.3)

However, we are not interested in the region of »
where the eigenvalues of p are well separated. As we
have shown in the previous section, this region does
not contribute to the transition probability. A more
interesting case is around such » where two or more
eigenvalues of p are either degenerate of nearly degen-
erate. We assume the simplest case; in the vicinity of
¥ =7, two diagonal elements p,, and p,, are equal and all
the other elements are well separated (the choice of
b1, and p,, is not significant). In such a case, we formu-
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late a more general perturbation expansion of 7, based
on the perturbation

p=p,+eby, (5.4)

where, in addition to all diagonal elements of p, the
unperturbed matrix p, containes p,, and p,,.

As in (3.7) we can show that

X~ A7+ 06), (5.5)
where
A =py, i>2, (5.6)
and A? and AJ are given by (4.1),
The matrix A can be represented as
A=aB, (5.7)

where a is a unitary matrix containing units on the
diagonal and the elements a,,, a,,, 4,,, and a,, are
given by (4.2). All the other elements of a are zero.

The matrix B can be written as
B=I+¢8B, (5. 8)

where I is the unit matrix. From the equation for A we
find

B, =\ B,=8p,a (5.9)
where we have used the fact that a diagonalizes p,,.
From (5.9) we obtain
(8p,ali;
B}, =4 (5.10)

PPy
with the diagonal elements still to be determined. We
find them by requiring that B is unitary, which gives

B}, =0. (5.11)
The matrix elements of B! for {,j=1, 2 are all zero.

For i,j> 2, it can easily be shown that

1 by (5.12)

H pjj =Dy

while for i=1,2 and j > 2 we have

B! '§—\ Ay Dy
i *
By Py—

It can also be shown that B! is antisymmetric, i.e.,
Bl=_B,

(5.13)

We can now calculate the matrix . From (5.1) and
assuming

N =05, +enl; (5.14)
we obtain
aplal.. oy
n?j:—-“-[xf‘)_i,_’ i#], (5.15)
17 it
and
an’ ’ 1 15 /7
7= [apxa]ij+[§poaB ]ij"[B apoa]ii » i, (5.18)

17 -Aj__xi

In the derivation of (5.15) and (5. 16) we have used the
fact that B! is antisymmetrie, in which case

A=[-¢B* (5.17)
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The matrix elements of 77, are all zero except 7, and
ng, which are given by (4.4). On the other hand, the
matrix elements of n%i are all different than zero except
the diagonal ones and 1}, (n},). Therefore, fori,j=1,2
the matrix n is given by

n=1°+0(?) (5.18)
while if any index of 7 is greater than 2, we have
n=en' +O(e?). (5.19)

More specifically, for i,;j> 2 the matrix elements of
n are given by (5.1) but for =1, 2, and j > 2 we obtain

1 r 2 ’
M, =— Bi;bi; +5 Wi Prs i} Qi Pry Gy By
Y pjj_Ai k=1 p].j—Ki k,p,m=1 p:‘f")‘i

(5.20)

Let us discuss the last result in two limiting cases,
i.e., to the right and left of the point » =», for which
P11 ="P2s+ In both cases we use the asymptotic values for
a; ; given by (4.4). If we specify i =1, the matrix ele-
ment 77, is

~— Py + Dip Dy
dr pji—pll (pjj—'pll)(pjj_pzz)

Uiy T

(5.21)

being equal to (5. 3) if p/, is neglected. However, to the
left of » =7, we obtain

bas _ _Diji=Dyp
ij"pu (pjj_[)ll)

Doy Pys ,
pjj - pll)(pjj 'pzz)

(5.22)

indicating that n}, changes rapidly in the interval Avy,.
If the derivatives of the off-diagonal elements of p are
neglected the change in 7}, is

Ant. =I(p;‘j_pil)plj_(p}j_pz/Z)plj
l nl]} ' (.pjj_pll)z

In contrast to the element 7,,, which has a Lorentzian
shape, the elements 7,, are a steplike functions.

M~ b3 p2j+(

¥ <7,

(5.23)

The elements 7}, are obtained from (5.21) and (5. 22)
by formally replacing 1+— 2. However, (5.22) also
changes the sign.

6. WEAK COUPLING LIMIT

The perturbation expansion of the S matrix becomes
inadequate for large transition amplitudes. In this
section we discuss another case where the expansion
(2.9) is not only inadequate, but it actually fails to give
correct scattering matrix. For simplicity we take the
two-channel example.

The width of 1, is

A7y = 8'———————/)12 . (6.1)

Pii—Pss
In the derivation of (4.26) and (4. 33) we have implicitly
assumed that over this distance the eigenchannel wave-
functions ¢, are oscillatory. In other words, we
assumed

Ay, > 27p 3, (6.2)

where p is defined by (4.15). However, there are cases
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where this condition is not satisfied, e.g., p,, is small
or the derivatives of p,; and p,, are large and of the
opposite sign. In these cases the constant C, defined by
(4.27), is small and the transition amplitude M, is
large. Furthermore, the elastic amplitude (4. 33), being
of the order

| pf =1yl
My, ~ 2 A1 7121
pzzp
is infinite for p,, —0. In reality, this is not the case

since for p,, —0, the S matrix is diagonal, i.e., the
transition matrix M is zero.

(6.3)

There are two ways to solve this problem: numerical
integration of the set of equations (1.12) in the interval
[r,— Avy, 7.+ Ar,] or perturbation expansion of the type
(1.5). There is no practical difficulty in using the
numerical integration since the solution is not oscilla-
tory in this interval. Outside the interval 7, is negligi-
ble therefore the numerical solution can be connected
to the solutions of (1.15) and the S matrix is obtained
from (1.22) and (1. 20).

The perturbation method to be used is the distorted
wave expansion of the S matrix. For small p,, the
series quickly converges, but we must show that is can
also be used under a more general condition. To obtain
this condition, let us calculate S, in the first Born
approximation of the distorted wave expansion. It can
be shown that S,, is?®

Slz"'_'_zﬂz_ f ar P, Py Y, (6.4)
(k1 ky) 0

where ), and ¥, are the solutions of the uncoupled set

of equations (1.1). To estimate (6.4), we replace the

wavefunctions with the WKB solution and integrate by

the steepest descent method. We obtain

20,V T

S ~=—7——|———,—W— ~2\/_C
12 Ay Zpr T m

(6.5)

The distorted wave expansion is therefore valid even
when p,, is not small provided the derivatives of p,,
and p,, are large and of the opposite sign. As we
have shown, this is exactly the case when the semi-
classical expansion of the S matrix breaks down. More
specifically, if C'/? is small, we can use the distorted
wave expansion for calculating the S-matrix. It can be
easily shown that this condition is equivalent with the
width of 7,, being smaller than the local wave length of
the wavefunction [the condition (6. 2) with the reversed
inequality sign] and p,,/p <« 1.

In the case of more than two channels we can use the
perturbation expansion of 7, described in Sec. 5, to
find the behavior of 7),, in the vicinity of degeneracy in
the channels 1 and 2. If the width of 7,, is smaller than
the local wave length, we use the distorted wave expan-
sion to obtain the S-matrix element S,,. Since we have
assumed that all the other channels are well separated,
the transition amplitude S,, is independent of the pres-
ence of the other channels. However, this is not always
the case. For example, p,, can be so small that the
direct transition amplitude for 1 — 2 is of the same
magnitude of the higher order transitions. An obvious
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example is when p,, =0 in which case the direct transi-
tion amplitude is exactly zero. Only the higher order
transitions give nonzero contributions. We will refer to
such a process as the «“forbidden transitions,*

Let us show how, in the framework of the 1 matrix,
the transition amplitudes for the «forbidden process”
can be calculated. For simplicity we assume that the
forbidden transition is between channels 1 and 2.

The matrix p can be written as the block matrix
pll’ p,

p= . (6.6)

1P P
Let us define a matrix a which diagonalizes P, so that
we have

1’0 pll’p’ 1’0

(6.7)

0, a|lp, P 0, a ap,
The new matrix ;7 replaces p in the calculation of 7.
Therefore, we have new parameters for the transition

1-2,

Pu=b1, Pp=2 (6. 8)
and
Py =bp= ?2 D1 g (6.9)
hence 7,, is
Qazbul & _Pu_ o),  (6.10)

7 = -
hz ()\2 - pu)z + 415?2 dr 7\2 "pn
where ¢ =1l pall.

Since we assume that p,;, j =2, are well separated,
we can calculate X, and q,, by the perturbation method.
The eigenvalue A, is to the second order in perturbation

n 2
A2:[722"'2 Pa (6.11)
i=3 Das— Pj;
while a,, are given by (3.9) and (3.11), i.e.,
ka -
Ay, ~0,, +—2 B3, 6.12)
R2 k2 ng - pkk (
Therefore, we have
n 2
Poa~ Py + 25 —L2i (6.13)

i=3 pzz _pjj
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and

n
p_12~p12+ E LS ’
E3 Do — Pie
showing that even when p,, is strictly zero, we can
define an effective p,, so that the transition amplitude
S,, can be calculated from the first order distorted wave
approximation.

(6.14)

CONCLUSION

The semiclassical solution of the multichannel equa-
tions described in this paper is a simple generalization
of the usual distorted wave expansion. It is a perturba-
tion method with the diagonalization matrix having the
role of perturbation. Since this matrix is independent of
77, we were able to prove that the resulting series is
also independent of 7. In the weak coupling case the
method fails, but, nevertheless, it can be used as a
suitable decoupling scheme.
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It is shown that the general quadratic Hamiltonian for coupled harmonic oscillators can be diagonalized,
provided the matrix of the quadratic form is positive definite. This condition is also necessary if the
frequencies of the resulting uncoupled oscillators are to be positive. The construction of a diagonalizing
matrix follows the usual procedure as in the Hermitian case; the only difference being a change of the

metric from
I=( Do J=(_)

1. INTRODUCTION

It is well known that the eigenvalues for a system of
n coupled harmonic oscillators can be found by means
of a principal axis transformation. Thus, given the
Hamiltonian

H=(@'a)H (%), 1)
with (@'a)=(a}+++a}, ar... a,) and // = (g* ‘;*> =T
a 2n by 2n regular matrix 4 is sought such that

AT A=A )

is diagonal. [Notation: Hermitian conjugation of ma-
trices and operators is denoted by a dagger. Thus (f:'r)T
= (a'a). A star denotes complex conjugation and a tilde
stands for the transpose. | Once A has been found, the
eigenvalues can be read from the uncoupled form

H= (b"0)H(5) =2 i b}b, + const, 3)
where
(3) =A%) @)

are the new boson operators, In order for the »’s to
satisfy the boson commutation rules, A must fulfilil?

A=(y 1, (5a)
and
AJAT =, (5b)

where J:<1 _JO The question now arises: What condi-
tions on the Hamiltonian matrix /~ are sufficient to en-
sure the existence of a matrix A satisfying (2) and (5),
and how is one going to construct A? It seems that such
conditions have not been spelled out in the literature,
though a set of operational rules to facilitate the com-
putation of A (when it exists), has recently been for-
mulated, ! Reference 1 also contains a fairly broad list
of interesting applications to physical problems,

The purpose of this note is to show that A exists and
can be calculated by following routine diagonalization
procedures, provided /is positive definite, that is,

YW HEY~0, Yx)+(0), (6)

Equivalently, since /! is Hermitian, the eigenvalues of
/! should be positive, [Note that, in general, the eigen-
values of // are not the diagonal elements of // * in
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Eq. (2).] As we shall presently show, Condition (6) is
also necessary, if the frequencies of the uncoupled
Hamiltonian (3) are to be positive. Indeed, let //’

= {7 .,:). Since /f is Hermitian, » and v are real
diagonal n by » matrices with diagonal elements y; and
¥l Let A=(L« %). Then, by Eq. (5),

At=gatr =4 B).

Equation (2), therefore, reads

- a3

(i )G o (3 B=( ). ()
Performing the matrix multiplication, we find y =1,
that is, #/ /=7 7)., Thus, the uncoupled Hamiltonian (3)
is explicitly given by

n

H:Z:f 295 (b1b; + 3). (8)
Accordingly, if the frequencies w;=2v;// are to be
positive, the Hamiltonian matrix

i = AV A= (S EA)(H2A) (9)
must be positive definite,

Before turning to the discussion of diagonalization,
let us recast Eq. (2), with the aid of (5), into the usual
eigenvalue form, namely,

(//J);—'\Tri /\T(//’-D, (10)

Note that //J is, in general, not Hermitian, Another
useful form is

AJHTAT =11, 11)

In Sec., 2 we shall first establish the existence of a
diagonalizing matrix 4, and then show how to actually
construct it, As it turns out, the construction follows
exactly the same procedure as in the Hermitian case,
the only difference being the change of the metric from
I=( ) toJ=( _). Finally, in the Appendix, we amend
a shortcoming in Ref, 2, wherein a related problem is
discussed, namely, given the diagonalizing matrix A,
find the transformation brackets connecting base states
of the old operators (a;, a}) with those of the new opera-
tors (h;,b}).

2. DIAGONALIZATION
A. Existence
Let // be a positive definite 2n by 27 Hermitian
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matrix, Since JHJ shares the same properties, there
exists a unitary matrix U such that

NJHIU=FE (12)
is a diagonal positive matrix, Define

v=UET1/2 13)
Then V is regular and satisfies

VIJHIV =1, (14)

Let P be a unitary matrix diagonalizing the Hermitian
matrix V'JV, that is,

PrVgvP=9,  ny="06m. (15)
Then

W=vpP (16)
satisfies

WITW=n, m)
and

WJITW =1, 18)

Equation (17) is a congruence transformation on the
matrix J conserving the number of positive and negative
elements in J (Sylvester’s law of inertia®), Hence, n

of the n;’s are positive and » are negative, Let 6 be a
diagonal matrix with elements

0y5= 8¢ |myl. (19)
Then

t=(e)(Ly) « - (Laa)) = WE/? (20)
satisfies

@)= oumi/ [mil (21)
and

(EIHI () = 845 || (22)

Now rearrange the column vectors (Z;} into a new matrix
Z=((z1+++ (2)E) -+ E)) (23)

such that the vectors (z;) have positive norm, namely,
(Zi)fJ(Z]) = diy, ’ (243)

and the vectors (z;) have negative norm

iyj=1, ..., n

@)IE)==08;;,  4,j=1, ..., n (24b)
Since Z satisfies

ZNZ =, (25)
and

ZVIHIZ =], (26)

we see that A=Z2" is a solution to the diagonalization
problem [Egs, (5) and (11)], We note, in passing, that
the same proof applies to more general metrics: the
diagonal matrix J could have any number 0 <k < 2n of
positive elements and, correspondingly, 2» - %k negative
elements. Equation (26), with the aid of Eq. (25), can
be rewritten in the form
NZ=ZTH)=Z(" _). 27)

Thus, (2;) are eigenvectors of /J with eigenvalues ;,
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and similarily, (2,) are eigenvectors of #J with eigen-
values — y;.

B. Construction

The actual construction of a diagonalizing matrix
Z = A" follows closely the procedure employed in the
Hermitian case, the only difference being the change of
the metric from I=(! |)to J=(* _;). We shall make use
of the following observations:

(a) The eigenvectors of J have nonvanishing norm,
Let

HI ) = yilxy). (28)
Since // is positive definite and J is regular,
() THI (ey) =7 () (x;) > 0. 29)

Thus (x,)'J(x;) 20 according to y; >0, and (x,;) can be
normalized to satisfy

)T ==x1, (30)

(b) Eigenvectors belonging to different eigenvalues are
orthogonal with respect to J,. Indeed, if

HIW;)=v(;)  and H I g) =v;(x),
then
)T TH Tx) =y (e )T () = 9, () T (). (32)

(c) If y; is a multiple root of det(//J — 1J) with multi-
plicity %, there exist exactly # linearly independent
eigenvectors having y; as their common eigenvalue,
Indeed, let Z satisfy Egs, (25) and (26)., Since the ranks
of the two matrices (A — y;0) and Z'J{(HT — v, NZ =1 =]
are equal, and the rank of the latter is, obviously,
2n -k, the homogeneous system (//J - y,I)(x) = (0) has
exactly 2n - (2n — k) =% independent solutions,

(d) The % independent eigenvectors (v), ... , (x,)
belonging to the degenerate eigenvalue y;, can be made
orthonormal (with respect to JJ) via the Schmidt process.
Assume, for definiteness, y; >0, Normalize (x;) and
denote the resulting vector by (v(). Now subtract from
{x;) its component along (v,), that is,

(8) = (xg) = (y)'T(,) + (vy). (33)
Clearly, (x§)#(0) [or else (v,) and (y,) would be linearly
dependent], and (x§)'J(v,) =0. Since (x{) is also an
eigenvector of //J (with eigenvalue y, ~ 0), we have by
(a), (x§)'J(x5)> 0. Normalize (x4) and denote the result-
ing vector by (v,). The process can be continued to ob-
tain (v}, ..., (v,) satisfying

HI(v)) =vi(vy), (V)" (v,) = 6, (34)

(e) If (x;)= () is an eigenvector of / J with eigenvalue
~ X
v;, then (x;) :Ci)is an eigenvector of // J with eigen-
value - y;, Indeed, using the explicit form

(g* :?x*)(::): :7’,'(:::),
the assertion is obvious, Since both 4, and — y; are
eigenvalues,

vi 2 0.

@81)

and

det(/1 - +0) = [T 67 =53, (35)
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We can now summarize the construction of the
diagonalizing matrix Af,

(i) Find the 7 positive roots of the characteristic
polynomial (35),

(ii) Obtain # independent eigenvectors (xy), ... , (x,)

belonging to the positive roots v,, ..

s 3 Vne

(iii) If necessary, use the Schmidt process to com-
plete the orthonormalization, and denote the resulting
vectors by (z;). Thus, (z9)'J(z,) = 5,;.

(iv) The first half of A", namely, (%) is given by

(=) * +~ z,) (36)
(v) Complete
A= D= -+ @G - - G, (37)

*
1

where (51):(sz) for (zi):(gg)_
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APPENDIX

The purpose of the Appendix is to amend a short-
coming in a related work by the same author. In Ref, 2
the following problem is discussed: Given the diagonaliz-
ing matrix A=(}+ f), find the transformation brackets
connecting base states of the old operators {(a;,a}) with
those of the new operators (b;, b}), In order to evaluate
a multidimentional normalization integral [Ref. 2,

Eq. (76)], I have assumed, in addition to Eq. (5), the
reality condition

() =™,
It turned out that (Al) is too strong in the sense that it

cannot always be met. Thus, for example, for n=2, the
two matrices

(A1)

A= (% -iea) and #:(Z -ﬁ)s
with ¢, 8,a, b real, and g% o%, a®=0a%- %, ana P?=F -},
fulfill Conditions (5) but violate (Al), Now the normali-
zation integral can be written as

(A2)

dny ~
Integral = p exp[- () F@)],
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(A3)
is a real 2n by 2n symmetric matrix, with
T,=Im(\ ). (A4)

Te=Re(x1y) and

Let @ be a real orthogonal matrix diagonalizing F, that
is,
QFY=f, [fi;="0if (A5)

Since the Jacobian of the transformation (y)=@ () is
equal to 1, the integral (A2) reduces to

lzn s 2n 9
Integral :f (nn‘x exp <—- Efﬂ?):iﬂ’; —1727T1 f@'ffy%”«';\’f
i1 =

2n
::.Izlifz:-llz — (det F)-l/z’

(A6)

provided all the eigenvalues f; are positive. We shall
now show that this is indeed the case, Consider the
matrix

.
G:F—[:( R ‘1>,
T, - Tg

with eigenvalues g;=/f; - 1. The assertion will be estab-
lished if g2 <1 fori=1, ..., 2n, Let (}) be a normalized
eigenvector of G with eigenvalue g. Then

(AT)

G5=(-2 5N3)=4G)s (A8)
where

P=7%+7 and C=TgT;~ T/Tg. (A9)
But (z)= (¥) +i(v) also satisfies

T(z) = (P = iC)(2) =¢°(2), (A10)
where

. (A11)
Hence, by Eq. (5),

=) @) =1- )"0 (z) <1, (A12)

The result (A6) is, therefore, always valid (when A
exists), and should replace Eq. (80) of Ref, 2,

Ie, Tsallis, J. Math. Phys. 19, 277 (1978).

Yy, Tikochinsky, J. Math. Phys. 19, 270 (1978),

iSee, for example, M. Bocher, Intvoduction to Higher Algedra
{(Macmillan, New York, 1915), p. 144,
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We introduce the concept of a conformal stationary limit surface as the boundary where a conformal
Killing vector admitted by a spacetime becomes null. This hypersurface is an infinite frequency shift
surface for conformal Killing observers and sources. We derive the local conditions under which it can be
an event horizon in the sense that it be a null geodesic hypersurface. In particular, we show that it is null
and geodesic if and only if the rotation of the conformal Killing congruence has a vanishing norm on this
hypersurface. Finally, we discuss the surface gravity associated with such a conformal Killing horizon.

1. INTRODUCTION

It is over twenty years since Rindler first differentiat-
ed between particle and event horizons in a classic
paper, ! While he defined a horizon quite generally as a
boundary between things that are visually observable
and things that are not, his analysis was based entirely
on the Robertson—Walker metric. As such it includes
all homogeneous and isotropic model universes. With
the advent of black hole physics, the concept of event
horizon was adapted to include those horizons occurring
in asymptotically flat spacetimes,®?® The most impor-
tant spacetimes of this type are the well-studied solu-
tions of Schwarzschild and Kerr, both of which admit a
timelike Killing vector that becomes null on a totally
geodesic null hypersurface, the event horizon,

In this paper we consider the properties of space-
times admitting a timelike conformal Killing vector
(CKV), £, which then satisfies the conformal Killing
equations?

L(‘gabzvagb_,—vbga:zd)gab- (1)

Here [, is the Lie derivative, ¢(x°) is the scalar func-
tion defined by 4¢ =V,£°, g,, is the metric tensor, and
v, is its associated covariant derivative, Consider now
a null geodesic with tangent vector k%, so that #%%, =0
and %*v,k?=0, It then follows from Eq, (1) that

k%7, (£%,) = 0, so that &%, is constant along the null
geodesic,

It is useful to define a “conformal Killing observ-
er,” with 4-velocity u“:e'wg“, in regions where £°% is
timelike, having defined ¥ = £¢,, We use a signature
— 2, in which case «%,=+1 when £° is timelike, From
Eq. (1), it then follows that the function ¢ is just ¢/
when ¢ is well defined, where we write ’=¢°v,, the
covariant derivative along the CK trajectory defined
by &% Thus ¢ just tells us the rate of scale change as
we move along the CK trajectory. In the case of a
Killing vector, for which ¢ =0, it follows that £%¢,
remains constant along the Killing trajectory.

Consider now a CK source at S, emitting photons at
frequency v,, joined by a null geodesic, I', to a CK
observer at 0 who receives the photons at frequency V.
Since the measured frequency is proportional to «%%,,
and £%, is constant along ", it follows that the photons
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are frequency shifted by the factor

V_s_(£u€ )1/2 (2)
Yo h (Ea‘fa)s )
Hence the hypersurface defined by £°L, =0, which we
shall designate %, is a surface of infinite frequency
shift for CK sources and observers, for S on Z; im-
plies v, =0 while 0 on Z; implies vy — « for finite v,

5

The existence of the CKV, &% implies that the metric
can be written in the form g,,=1(x°) k,,, where f(x°) is a
function of spacetime position that is related to ¢ (x°),
while h,, is a function of position with the restriction
that it be constant on any CK trajectory, ! When a CK
observer can be defined, i,e., when &% is timelike,
this observer experiences a purely conformal change in
8« as he moves along the CK trajectory. If the CK con-
gruence is irrotational, he concludes that the spacetime
is “conformally static”; otherwise he concludes that the
spacetime is “conformally stationary” for he can detect
rotation, In regions where the CKV is not timelike, such
an observer cannot exist, We are then led to term the
boundary, where the CKV becomes null, to be a “con-
formal stationary limit surface.” Even for spacetimes
having an ordinary Killing vector, it appears appropriate
to distinguish between static and stationary limit
surfaces,

In the following sections we consider the circum-
stances under which Z;, the conformal stationary limit
surface, can form part of an event horizon, in the sense
that it be a null geodesic hypersurface, It should be
noted that some of our results could be obtained by
means of a conformal transformation since a null
geodesic hypersurface is invariant under such a trans-
formation and the work of Takeno® directly implies
that given a CKV in one space, there is generally a
large class of spaces that admit this vector as a KV.’
On the other hand, the concept of surface gravity is not
easily developed with this latter approach because
timelike geodesics do not transform to timelike geode-
sics. The direction that we follow here, however, al-
lows us to introduce this concept in a clear physical
manner, Furthermore, it demonstrates how significant-
ly different the CK case is from the ordinary Killing
case in terms of horizon degeneracy, surface gravity,
and surface temperature,
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2. CONFORMAL KILLING CONGRUENCES

To study the geometry of a congruence of conformal
Killing trajectories, it is useful to expand the covariant
derivative, u,, of the unit tangent vector in the usual
form?

Vaub: ”adb + Wap + Oab + Ghab, (3)
where §=3Vu* is the expansion, %, =u°Vu, is the
acceleration, w,,= Vi1 = Uity iS the vorticity,

Tap = Vigllyy= U gty — 6k, is the traceless shear, and
Moy =85 — Uty i8S the projection tensor. Using Eq. (1),
it is straightforward to show that the CK congruence
is shearless® and has expansion == $e™®, where in
general “=#"v,, The acceleration can be written as
it,= 0, - ), We can then write Eq. (3) in the form

va”b = e-w(.bg-ab + Wyp — Havbzrbr (4)
from which we also have
Viby = Oggn— £ T £,V0  €%w,,. (5)

Forming £,%,¢,, permuting and summing we find

aé(avbgc) = d)g(agbc) + ewg(awbc)’ (6)

where (--- indicates the sum of distinct cyclic permuta-
tions. In the case that w,,=0, this equation is just the
usual hypersurface orthogonality condition, &,V,£,;=0,
combined with the conformal Killing Eq. (1).

From Eq, (1), we can obtain a particularly useful

expression for the acceleration
TQGZFab"{b, where P;b:(f""(d)gab—— Vo b (7)

Since we can also write £, as e ¥V, &;, it follows that
F,; is a bivector, whose dual, FE, is given by

a
Tlabrs F rs, (8)

where 1,,,, is the alternating tensor, The rotation
vector associated with #° is

o=

E,=

w” = i, G, 9)

which is related to the vorticity through w,,= 1, 4" ©°.
In terms of the bivector F,, we haye the more conve-
nient form of the rotation, w®=— F2¥%,,

Since we shall be interested in regions where £* may
become null, so that «® is not defined, it is useful to
introduce a renormalized rotation vector, w”, given by

o = L)nrabcréavbsc, (10)

which remains defined on 2. It follows that w*=e%w®
when £ is not null, and that @®=— e®%,, as above,

The squared norm of this renormalized rotation
vector is

D0, = W F PR ae,uc, (11)
We can now use the identity!®
AabBbc— ‘éabAbc = éé‘::Ars Bsr’ (12)

where 4,, and B, are any two bivectors with duals xfab
and B,, in a four-dimensional Riemannian space, Taking
both A,, and B, to be F,,, we then have

j.'mbj:;c: Fabl‘;c— L8PE, FTS, 13)

cors
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and from Eq. (7) we have

R FTe=e®(VEPy, 6, - 497). (14)
Equations (7) and (11) then yield

Wwe M =t e® + 207 - 1V E,, (15)

We now consider a hypersurface, £, defined by
£%t, = constant, A normal to £ can be written as
n,= 5V, (£°,), so that n,=£°V,5,. Tt then follows from
Eq. (1) that &%, = ¢£%¢,, and also that

n, =e®(du, - e*u,). (16)

Of course #®u,=0, since u®4,=1, so that we have for
the norm of the normal vector

non, = e¥(p? + ezwit"z.ta),, 17

Then using Eq. (15) to eliminate u%,, we have the funda-
mental equation

0w, = 1o, = £°E, (9% - VOEPY, L), (18)

This is the generalization to CKV’s of a well-known
equation for KV’s, obtained first by Vishveshwara? and
later in a somewhat different manner by the application
of the Frenet—Serret formalism to Killing trajecto-
ries, !! The corresponding equation for £ a homothetic
Killing vector has recently been obtained, where the
Frenet—Serret equations are integrated explicitly, 2
similarly to Ref. 11, Equation (18) states that the con-
formal stationary limit surface, %,, where £° becomes
null, is a null hypersurface if and only if w? is also null
(or the zero vector) on %,

3. THE CONFORMAL KILLING HORIZON

For any hypersurface to constitute a portion of an
event horizon, it is necessary that it be both null and
geodesic. Of course there are further global conditions
to be considered, but these are not of direct interest
here, In the case of Schwarzschild spacetime, the static
limit surface for time-translational Killing observers,
where £ becomes null, coincides with the event hori-
zon, This is not the case for the Kerr spacetime due fo
the nonvanishing rotation associated with the time
translational Killing vector,>® As we have already
pointed out, a similar conclusion is true for a CKV
with rotation,

Hence we are faced with two options, the first being
to assume that the rotation of £° vanishes, Failing this,
we shall assume that there exists another CKV from
which, with £*, we can form a “mixed CKV,” say ¢°,
which has null or vanishing rotation on the stationary
limit surface defined by £, =0, This is analogous to
the “mixed KV” introduced in the Kerr spacetime by
Vishveshwara? and Carter. ® In the following, we shall
drop the tilde and simply denote the mixed CKV by £°,

From the definition of the normal, #, to Z, and
Eq. (1) we can write
n, =205, - &L, (19)

On the hypersurface $;, we have both £ and »* null,
with £%n,=0 as well. Since two nonzero orthogonal null
vectors must be parallel, it follows that n, =8¢, for
some scalar function §(x°). (In a similar way, it is ob-
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vious that, on Z;, w® is also parallel to £,, unless it is
the zero vector.) Equation (19) then implies that £, =ht,
for some scalar function k(x°), in which case n,=(2¢

— h)£,. Hence both £* and n® are parallel to a null geo-
desic tangent vector, and it follows that the hypersur-
face where both ££_ and &%, vanish is null and
geodesic.,

The hypersurface Z; then satisfies the local condi-
tions that it constitute a portion of an event horizon,
That more, global, conditions are necessary is obvious
from a consideration of the Minkowski and Robertson—
Walker spacetimes, both having the 15 parameter full
conformal group. Some of their CKV’s certainly define
hypersurfaces which are null and geodesic, forming
the past and future null cones of any typical observer.
However they do not define a global horizon, which is
consistent with our notion of the homogeneity properties
of these spacetimes. Of course certain limiting null
cones do define particle and event horizons, and these
have been discussed by Rindler, !

4. SURFACE GRAVITY

We have shown that £, =%&, on the hypersurface Z,
Of course this may also be so away from Z,, so that the
CK trajectory is a nonnull geodesic, and for the timelike
case represents free fall, This is illustrated by the
HKV of Minkowski spacetime which has h=¢ =1, Since
£r=ht, implies (h - ¢)£%%,=0, then imposing &, =h¢,
with 2+ ¢ implies that £, and hence »#® and w?, are null
and parallel. In our consideration of horizons we are
only interested in Z; and restrict ourselves to this
hypersurface.

Let X be the parameter along the CK trajectory such
that £2=dx*/dx, (A is the group parameter related to
£%.) If 1 is the affine parameter along this curve, i.e.,
such that (dx®/du)v,(4x¢/du)=0, then the function % is
just (@®x/du®)/(dr/dy), relating the two parameters by a
“relative acceleration.” To derive an expression for #,
we form g,&5=h*t,E,, and noting that £2&,= £,¢4 on 2,
we obtain

Wy = (V2E)E,V,E, on Iy (20)
Using Eqgs. (1) and (6), we arrive at the relation on %,
(h— ) =20 - iVeEl,E,, (1)

To introduce the notion of surface gravity for the
horizon, we must consider an acceleration, Since «°
becomes undefined on Z;, we consider a renormalized
acceleration, e‘x®, which remains well behaved on 2,
analogous to the renormalized rotation w?, In general,
we have the relation

ga': d)ga + e2uﬁl'la, (22)

80 that ez’%”z},ﬂ: {( —¢)? on 3,, Defining g, the surface
gravity, to be the norm of the renormalized accelera-
tion, it follows that

gi=2¢%- {vitiy e, (23)

on the hypersurface %,. 1* We can also use this as a
definition of g off Z,, and write Eq. (18) in the form

Ww, = nin, = (gt - PN EE,. (24)
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It is of some interest to consider the variation of g
along each CK trajectory generating the null hypersur-
face £,. We make use of the identity for CKV’s

VoVaby=tRycap + 82Ve® +85:Vad = £acVads (25)
where B,,,, is the Riemann curvature tensor, This is
derived in the same manner as the more familiar iden-
tity for Killing vectors, Transvecting with £°, it follows
that

(Va‘gb), = d)’gab_ Eavbd) + Ebva(by (26)

where the Reimann term vanishes due to the pair anti-
symmetry of R,,,. By straightforward differentiation of
Eq. (23) along the CK trajectory, using Eq. (26), we
find

(g¥+ 0% =2£9,0. 27)

On the hypersurface Z,, where £*'=ht% and g2 = (h - ¢)?,
we then have the results

(h-2¢)=0 and (g-¢)'=0 on I, (28)

where we adopt the sign convention g=%- ¢. For ¢
constant, i.e. £ is a homothetic Killing vector, it fol-
lows that the surface gravity remains constant along
each of the null HK curves generating 2, while for a
CKV, the surface gravity scales up or down with ¢
along the CK curves, In the latter case ¢, and hence g,
is not necessarily constant on Z,, This can be seen
most directly from a consideration of Minkowski space-
time, where there are four CKV’s with ¢ being pro-
portional to #, x, v, or z (Cartesian coordinates). These
¢’s are obviously not constant on 2y, which is in this
case just the null cone, Of course this Z; does not de-
fine a global horizon in this spacetime. Since ¢- ¢

(or I - 2¢) is the conserved quantity along the null
geodesic CK generators of Z;, one would also like to
consider the variation of ¢— ¢ from one generator of Z,
to another, in analogy with the generalized Hawking—
Lichnerowicz theorem, !* where the surface gravity was
found to be constant over any connected component of a
Killing horizon, The constancy of g—¢, suggests that
it is g - &, and not g, to which the temperature is pro-
portional for such possible horizons. 15

Following Boyer, % it is of interest to consider the
possibility of the horizon becoming degenerate in the
sense that v, (£°¢), i.e., n,, becomes the zero vector,
Since n*= (¢ - 2)&%, and (g~ ¢)'=0, it follows that if the
horizon is degenerate at any point along a CK generator
then it must be degenerate along the entire generator,
Unlike the Killing horizon case, the surface gravity is
not zero, being just ¢, which itself might not be
constant on the generator,

s

Equations (18), (23), and (28) are generalizations of
now familiar results for KV’s and their associated hori-
zons, and should be of use in considering a wider range
of models for dynamic problems, such as black or
white holes or for models of locally inhomogeneous
universes, One simple application of these results is to
the self-similar spherically symmetric spacetimes
considered by Carr and Hawking, !” and other authors.
The existence of the horizon structure in these space-
times is most easily understood in terms of the exis-
tence of the similarity homothetic Killing vector. 1

18
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A generalized framework is presented for analyzing the linearized equations for perturbations of
inhomogeneous plasma equilibria in which there is a collisionless species, some properties of the solutions
of the linearized equations are described, and a basis is provided for numerical computations of the
linearized properties of such equilibria. It is useful to expand the perturbation potentials in eigenfunctions
of the field operator which appears in the linearized equations, and to define a dispersion matrix whose
analytical properties determine the nature of the solutions of the initial-value problem. It is also useful to
introduce auxiliary functions to replace the usual perturbation distribution functions, and to expand the
auxiliary functions in eigenfunctions of the equilibrium Liouville operators. By introducing the auxiliary
functions, great freedom is achieved in the choice of the field operator which appears in the linearized
equations. This freedom can be used in some problems to define expansion functions for the potentials that

are particularly suitable for studying specific normal modes.

I. INTRODUCTION

Although plasmas produced in the laboratory are al-
ways inhomogeneous and finite in extent, practical tech-
niques have not been well developed for the theoretical
determination of the linear response of a collisionless
plasma to a small deviation from an inhomogeneous
equilibrium. There is general interest in the solutions
of the linearized equations for the evolution of inhomo-
geneous collisionless plasmas, and in useful techniques
for approximating those solutions. There is also con-
siderable practical interest in understanding kinetic
effects in some current experiments that involve quite
inhomogeneous plasmas at least one of whose particle
species can be taken as collisionless. Examples of such
experiments are highly diamagnetic pinches containing
hot ions,

The objective of this paper is to present a general
framework for linearized analysis of inhomogeneous
collisionless plasma equilibria, to describe some
properties of the solutions of the linearized equations,
and to provide a basis for obtaining approximate
numerical solutions in a practicable way.

Generally speaking, the perturbations of the potentials
or of the field functions appropriate to the problem at
hand are represented as a linear combination of some
basis functions of position with time-dependent coef-
ficients, Then the evolution of the system can be de-
scribed in terms of a dispersion matrix whose rows
and columns are associated with the various basis func-
tions. For example, in the case of a spatially uniform
equilibrium of a one-dimensional electrostatic plasma,
it is usual and appropriate to express the scalar poten-
tial as a Fourier series. Then the dispersion matrix
is diagonal, with the result that each wavenumber in
the perturbation can be analyzed separately. However,
were the equilibrium spatially nonuniform, using a
Fourier series for the potential would not yield a diago-
nal dispersion matrix and each wavenumber could not
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be analyzed separately. It would be desirable to find a
set of basis functions with which the dispersion matrix
would be diagonal, or nearly so for the most important
eigenfrequencies of the problem. The necessity of
choosing a suitable set of basis functions for expanding
the pg¢rturbation potentials is a central aspect of a
linearized analysis for any inhomogeneous equilibrium.
The optimal choice is a matter of physical intuition and
experience, and it depends on what information is de-
sired in the specific problem at hand. In the treatment
that we present here, great freedom is allowed in the
choice of basis functions for the perturbation potentials.
This is achieved by replacing the perturbation distribu-
tion function for each particle species with an auxiliary
function, which is the perturbation distribution function
for that species plus a linear functional of the perturba-
tion potentials. By this means, an arbitrary operator
is introduced into the equation satisfied by the perturba-
tion potentials, and the basis functions are taken as
eigenfunctions of that operator.

If it is possible to find the auxiliary functions or,
equivalently, the perturbation distribution functions as
functionals of the perturbation potentials exactly, then
it may not be useful to expand the auxiliary functions.
However, this is usually not the case. Generally, it is
also necessary to introduce basis functions for the
phase space, functions of position and velocity or of
position and canonical momentum, which are used to
expand the auxiliary functions. To expand the auxiliary
function for a particular particle species, we have found
it advantageous for both analytical and numerical pur-
poses to take basis functions for the phase space that
are simultaneous eigenfunctions of the equilibrium
Liouville operator and the equilibrium constants of the
motion for that species., This is standard in the case
of a spatially uniform equilibrium of an electrostatic
plasma, although with that problem the procedure is
usually described in different terms. By introducing
the eigenfunctions of the equilibrium Liouville operator
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in the general nonuniform case, we achieve a unified
point of view that is very useful.

Techniques and results that we describe in this paper
are being applied to the so-called Vlasov-fluid model,
in which the ions are treated as collisionless and the
electrons are approximated as a massless fluid3'4; they
are also being used for investigating the stability of one-
dimensional BGK equilibria.® The ideas have evolved
from these applications and from earlier computational
work on linearized behavior of perturbations of spatial-
ly uniform equilibria of collisionless plasmas in one
dimension. ® Buneman and Holdren” have used similar
methods independently. Sedladek® has investigated the
spectral properties of the Liouville operator.

In addition to its application to specific problems dis-
cussed in the preceding paragraph, our method gives
an insight into some of the general properties of the
linearized solutions of the initial-value problem in the
neighborhood of an inhomogeneous equilibrium. We give
a general formula, Eq. (IV.24) or Eq. (IV.26), for the
dispersion matrix D{w) which determines the character
of the linearized solutions. The normal modes occur
at complex frequencies w where D(w) has a zero eigen-
value; the form of the normal mode is determined by
the corresponding eigenvector. For a completely
Hamiltonian system, the form (IV.26) of D(w) shows
that it is a formally Hermitian matrix function of w.
From this it follows that the normal frequencies w
occur in conj‘ugate pairs. The Hermitian property also
implies a variational theorem for the normal frequen-
cies. The form (IV.24) or (IV.26) shows that the ele-
ments of D(w) are analytic except for branch points on
the real axis at multiples of extreme frequencies in
the unperturbed particle motions. Because of the cut
along the real axis, the general linearized solution
consists of a continuum of van Kampen modes with real
frequencies in addition to possible discrete normal
modes. In the stable case, where there are only van
Kampen modes, the asymptotic form of the solution
after long times is dominated by the character of D(w)
in the neighorhood of the branch points. This is in con-
trast to the homogeneous problem where the long-time
solution may be dominated by a Landau-damped mode.
Landau-damped modes can occur also in the inhomo-
geneous case, but there are always real branch points
which dominate the asymptotic behavior. The present
paper provides an initial approach to the study of gene-
ral features of this sort for the inhomogeneous initial-
value problem.

In Sec. I we give the fundamental linearized equa-
tions for the perturbation distribution functions and
potentials in the general case, define the class of auxili-
ary functions that we shall consider, and give the basic
equations that determine the auxiliary functions and
the perturbation potentials. These basic equations are
also specialized to the important case in which the
particle equations of motion and the equations for the
potentials are derivable from the same Hamiltonian.
The Laplace transform solutions for the auxiliary func-
tions and potentials are obtained in Sec. I in two
forms, one of which is of particular significance for
numerical computations. Expansions of the auxiliary

414 J. Math. Phys., Voli. 20, No. 3, March 1979

functions and perturbation potentials are introduced in
Sec. IV, and general properties of the dispersion ma-
frix that enters the Laplace-transiorm solutions are
derived. The important special case in which there is
at most one nonignorable coordinate in the equilibrium
is treated in more detail. Properties of the solution of
the initial-value problem are discussed in Sec. V.

In Appendix A we discuss Hamilton’s principle and
give the Lagrange and Hamilton equations in a vector
form. Three examples of systems to which the formal-
ism of this paper can be applied are displayed in
Appendix B: a one-dimensional electron gas, a three-
dimensional completely collisionless multispecies
plasma, and the Vlasov-fluid model. We present a sim-
ple general proof of the anti-Hermiticity of the equi-
librium Liouville operator in Appendix C. We discuss
the eigenfunctions of the equilibrium Liouville opera-
tor in Appendix D, where we also obtain the eigenfunc-
tions and eigenvalues explicitly for the case in which
there is at most one nonignarable coordinate in the
equilibrium. Finally, in Appendix E, we consider some
properties of analytic matrix functions.

Il. THE FUNDAMENTAL EQUATIONS

In order to encompass the variety of situations to
which the formalism in this paper is applicable, we
pegin by writing the basic equations in a general form.
We consider a plasma which can be described by a
linearized Boltzmann equation for each collisionless
species s,

(2 0] 0= 00600

=Up oD,

where ¢ denotes time, and a set of field equations of
the form

KB o) =23 S8,

(1. v

(11.2)

The quantities / , U, K, and J% are linear operators,
and ' denotes adjoint. /{7 is the perturbation of a
single-particle distribution function f; for species s
about an equilibrium distribution function #{*:

Fom i+ 1. (1. 3)

gb(l’ is the perturbation of an array ¢ of potential func-
tions about an equilibrium array ¢*:

(11. 4)

o=+ pd,

For example, the elements ¢{*’ of ¢ could be the
perturbation of the scalar potential and components of
the perturbation of the vector potential for the electro-
magnetic field; or they might be any iinear functionals
of the perturbation electromagnetic potentials. The
equilibrium quantities /¢ and ¢ do not depend on
time.

In the general theory it often does not matter exactly
what independent variables are chosen in addition to
time, and it is often convenient to leave them unspeci-
fied. Accordingly, we use the notational convention
that any given quantity will be denoted by a single sym-
bol regardless of which independent variables are used
and regardless of how the quantity is represented. When
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we wish to specify a definite set of independent variables
in terms of which a quantity is to be expressed, we
shall include those variables as arguments with the
symbol for the quantity. When an argument is indicated
for an operator, it may mean that the operator involves
one or more functions of the argument; or it may mean
that the operator is a differential or integral operator
with respect to the argument; or both of these mean-
ings may be implied. It is frequently useful to repre-
sent a function as a column matrix whose elements are
the coefficients for the expansion of the function as a
linear combination of linearly independent basis func-
tions. The corresponding matrix representation of an
operator is a rectangular matrix., We shall use the
same symbol to denote the matrix representation of a
function or an operator that we use to denote the func-
tion or operator itself. These notational conventions
will expedite our presentation. Sometimes, as in Eqs.
(I1.1)—(I1. 4), we shall indicate the argument { explicitly
but suppress all other arguments.

The quantity f; may be a distribution function for the
phase space of position and canonical momentum or
for the phase space of position and velocity. For most
cases of interest, the two kinds of distribution function
are proportional with a constant numerical factor of
proportionality. However, this is not always true.
Whichever kind of distribution function f; is, it can be
expressed in terms of position coordinates and velocity
components or in terms of position coordinates and
canonical momenta equally well.

The operator /  is the equilibrium Liouville operator
for species s. That is, the operator [3/9¢ +/ ] acting
on an explicit function of time and phase-space variables
gives the total time rate of change of the function as-
suming that the phase-space variables change with time
according to the equilibrium particle equations of mo-
tion for species s. Expressed in terms of position and
velocity, [ is

Lr, ) =vev,+ %S [E9(r) + %VXB‘O’(r)]" v,

s

1
+ MS‘ F§0)(r’ 'V)B VV’

(11. 5)

where E©(r) and B‘(r) are the equilibrium electric
and magnetic fields, @, and M, are the charge and mass
per particle of species s, ¢ is the speed of light, and
FiO(r, v) is any force acting in equilibrium on a parti-
cle of species s in addition to the Lorentz force. We
assume that F{¥(r, v) is derivable from a generalized
potential. We also assume that the array of potential
functions ¢ has been so chosen that E*’, B and

F{ can be determined from ¢‘”, The operator U, is
an array, of dimension equal to that of ¢>(1’, whose ele-
ments, Ug,, are linear operators which act on functions
of configuration space and time to produce functions of
the phase-space variables and time. In Eq. (I.1), U,
acts on the array of perturbation potentials to give the
total time derivative of the perturbation of the distribu-
tion function for species s. We refer to K as a field
opevator; it is a linear operator on the array ¢“’, and
its elements are linear operators in the space of posi-
tion and time. The operator JL acts on functions of the
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phase-space variables and time to produce functions

of configuration space and time. It is an integral opera-
tor with respect to velocity or canonical momentum,
but most of our development does not depend on that
fact. In Eq. (I1.2), JI 7 is the contribution to the
source for d)u’ due to the perturbation of the distribu-
tion function for species s. (The operators Usand J
provide a connection between configuration space and
the phase space; they can be represented by rectangu-
lar matrices. The adjoint of an operator that produces
a function in the phase space by operating on a func-
tion in configuration space is an operator that does the
reverse; it produces a function in configuration space
by operating on a function in the phase space. We adopt
the convention that an operator which produces a func-
tion in the phase space by operating on a function in
configuration space be denoted by a symbol without a
dagger.) In terms of position and velocity, we take

JL A to be of the form

S, v B, v, )= [ Evife, P, v, ). (11.6)

The operators K and U; may involve the time differen-
tiation operator 8/2f, but we do not allow the time ¢ to
enter these operators in any other way. Each of the ex-
amples that we have considered is consistent with this
restriction; and it is required if the equations are to
be invariant under time translation. Although invariance
under time translation would not rule out the possibility
that even J; involve time differentiation, nevertheless
we do not allow that possibility. We shall assume that
Jtis completely time-independent. However, it should
be noted that our subsequent development could be modi-
fied easily to include time differentiation in J1 if that
situation were to occur in a problem of interest.

If all of the particle species are collisionless, then
the linearized equations certainly have the form of
Eqs. (II.1) and (I1.2), Sometimes equations of the form
of Egs. (I1. 1) and (II. 2) can describe a plasma in which
one or more species are not collisionless. This is the
case with the Vlasov-fluid model, *** in which the effect
of the electrons is manifested in the form of the coupled
equations for the perturbed distribution function of the
collisionless ions and the perturbed vector potential.
In order to render the meaning of the quantities in
Egs. (II.1) and (II. 2) more concrete, in Appendix B we
give examples of three systems whose governing equa-
tions are of this form. For the present, let it suffice
that we do consider systems whose governing equations
are of the form of Egs. (I1.1) and (11.2), and that many
plasmas are of that type.

We now modify Eqs. (II. 1) and (1. 2) by introducing
an auxiliary function g;, depending on the phase-space
variables and time, to replace fs(l); the definition of
&sis

g =) = 22, P () o (1)
=F 1) = P (1) o M(1),

where P(#) is an array, of dimension equal to that of
»™", whose elements, P (t), are linear operators in
the space of the phase-space variables and time. The
equations for g, and ¢, obtained by using Eq. (I1.7)
to eliminate f{" in Eqs. (II. 1) and (II.2), are

(1.
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[587 +/ ] g0 =22, W (0 ¢{P()

=W, (1) ¢ D), (1. 8)

At =2 (Tl g (1), (L. 9)
where

W () =Ut) - [% +/ ] P (1), (11. 10)

A=K() -2 JIP (). (11 11)

There is an important restriction that we impose on the
time dependence of P (/). The new field operator, A,
which replaces the old field operator, K(f), is vequired
not lo tnvolve time in any way; it is not a differential
operator with respect to time. The motivation for defin-
ing the functions g, as in Eq. (II.7) is that the new field
operator A in Eq. (I1.9) can be chosen arbitrarily, by
appropriate choice of the linear operators P, If, for

a specific problem, qb“’ can be adequately represented
by a linear combination of a few of the eigenfunctions

of A, then Egs. (II. 8) and (II. 9) can be solved conven-
iently by expanding gf)(l’ in terms of the eigenfunctions
of A and retaining only a few terms in the expansion.
This can be of considerable practical importance. Of
course, the question still remains how to choose A such
that it will be useful in a given problem, and that is a
very important question of physics. The purpose of this
paper is to provide a framework for treating Eqs. (11, 8)
and (I1, 9) once A has been chosen, and to point out the
value of seeking appropriate new field operators that
are generated by the auxiliary functions g;. These ideas
have served well in a numerical application of the
Vlasov-fluid model to screw pinches® and in a study of
the stability properties of one-dimensional BGK
equilibria.’

Some of the systems to which the theory in this paper
applies are completely Hamiltonian; that is, the parti-
cle equations of motion for each collisionless species
and the field equations can be derived from Hamilton’s
principle by using a single Lagrangian. We assume that
the equations of motion for the particles can always be
derived from a Lagrangian. However, for some of the
systems that we consider, like the Vlasov-fluid
model, ** the field equations and the particle equations
of motion cannot both be derived from the same
Lagrangian; in fact, it may be that the field equations
for a given problem cannot be derived from any
Lagrangian. In the remainder of this section, we in-
dicate how the operators [ ; and U are related to the
particle Hamiltonian, and how the operator J; is related
to the particle Hamiltonian for systems that are com-
pletely Hamiltonian. Some further details and back-
ground information can be found in Appendix A.

Let L[r, #, ¢(r, /)] be the Lagrangian for a particle
of species s with position vector r and velocity vector
r. Considering L to be an explicit function of the argu-
ments r, r, and ¢, it is convenient to define a canoni-
cal momentuw vector p by

p:V;,Ls[r, 1.', ¢(r, t)];

where V; is the gradient with respect to the velocity
variables holding r and ¢ fixed. The components of p

(11. 12)
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are simply related to the usual canonical momenta p;

as follows. Suppose that we use an orthogonal coordi-

nate system whose unit vectors are &;(r), that the co-

ordinate associated with 8, is denoted by ¢,, and that

the derivative of r with respect to ¢; is expressed as

usual in terms of a function k;(r) by
ar

—_— = hj(r) éj(r).

11.13
o (1. 13)

If we specify the dependence of L, on I by means of the
variables (},, then the usual canonical momentum p; is
defined by

aLS .
b= e (11, 14)

it is related to the jth component of p by

p; =8 p=p;/h,. (11. 15)

Thus, if the coordinate system is Cartesian, the com-
ponents of p are the usual canonical momenta. The par-
ticle Hamiltonian corresponding to L; is defined by

Hlr,p,(r,D]=p-r-Lr, 7, ¢, 0] (11. 16)
and Hamilton's equations, written in vector form, are
r=v,H,

oH, H

‘3:‘ VrHs’Z){(v¢i) P :_VrHs_ (V¢) a_-s o
9 a¢

(I, 17)

In these equations H; is considered to be an explicit
function of r, p, and ¢; V. is the position gradient hold-
ing p and ¢ fixed; V, is the canonical momentum gradi-
ent holding r and ¢ fixed; and V is the usual gradient
for functions of position. The quantity 3H,/3¢ is an
array whose elements are 0H,/3¢,;. The vector form

of Hamilton’s equations is equivalent to the usual scalar
form

., M,
T (11, 18)
1. 18
. 2H 3¢, oH
R DT I
b 2q; ~ Ttag; A9,

A more detailed discussion of the vector form of the
Hamilton and Lagrange equations is given in Appendix A.

If /s is the distribution function for the phase space of
position and canonical momentum, it satisfies the fol-
lowing collisionless Boltzmann equation:

afs . ° 8H3 =
5 T (Vf) (V. HY) - (9,.1) (VrHs+(V¢’) ¢ >’0’

(I1.19)
where, as in Eq. (II. 17), a sum over the elements ¢,
of ¢ is implied in the last term. The equilibrium dis-

tribution function is a solution of the zeroth-order part
of this equation:

L, P 0, py=0. (11. 20)

The definition of the equilibrium Liouville operator in
terms of position and canonical momentum is
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Llr,p)G(r, p) = (v, G)* (V,H)

~(v,G)* [V,Hs + (V") 5%1%%] , (11,21)

where G(r, p) is any function. [When we work to zeroth
or first order in the perturbed quantities, as in Egs.
(I1.20) and (II. 21), we need only be concerned with par-
ticle motion in the equilibrium potentials., See Ref. 1)2
with regard to this. ]

It is frequently useful to use the canonical coordinates
and momenta explicitly, as we shall in Sec. IV. Let g
denote the set of coordinates ¢;, and p denote the set of
their conjugate momenta p;. If we consider G(q, to
be any explicit function of ¢ and p, then/ (G is given by

+a¢(0) aHs)]
ag;  0q; 09©)]"

L.Glap=3, [aG 0H, 3G <8H

aq; 3p; 8{)
(11,22)

(If G depends explicitly on ¢, the corresponding terms

must be added.) This expresses the well-known fact

that / ;G is the Poisson bracket {G, H.}. The equivalence

of Eqgs. (I1.21) and (II. 22) can be demonstrated directly

by deriving expressions for V, and V, as indicated in

the discussion following Eq. (A.12), and by using the
identity

(s [(1,8,)]- (hi éi> ~ (18, [V(0,8))]- (% é,.)
- (h,8)- [ (;71- ‘,-)]-(hjé,.)
8, [ (+ i)] « (n8)
- (h,é,)"{(h,é,)x [vx (hi é,.>]}=o.

= l

The perturbation distribution function !’ satisfies
the first-order part of Eq. (II, 19),
3/, W), a
+ (1) S 1)
[ Lolx,p) ] <a<z> ¢
aH
(T, (Vo D) Sy, (11.23)

which is of the form (II. 1),
is defined by

The quantity [(8L5/3¢(0))fs(0)]

oLs (0))
(st
2H,
=(%ef") (V’ a¢‘°’)

2
B f(O) aZH
=2 {8% 3p;09™

_ af;‘”[ aszo L 20" o%H
op; L39;00 * 3q; 3™ ff-

(I1.24)

The large parentheses on the left side of the equation
are used to indicate that the differential operators in
3Ls/3¢" act only on £{*. Comparing Eqs. (II.1) and
(I1. 23), we see that U can be written as
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U [;és (0)]+ aad)Hs)(vpfs(O))o v
8L (0] BHS [?fs(o) i]
[th— RO [ gty | 5 al (11. 25)

It must be remembered throughout that V. and V, are
gradient operators holding the arvay of potentials fixed.
Note that U, does not contain the operator 3/9¢ if the
variables r and p are used; if the variables r and v are
used, U, may contain 3/3f. See the note added in proof,
Ref. 13.

In terms of the variables r and p, we take the quantity
JLr & that appears in Eq. (I1. 2) to be of the form

Jir, ) (e, p, ) = [Poyslr, p) F M (r, p,8),  (I1.26)
quite analogously to Eq. (II.6). For completely
Hamiltonian systems ¢, can be written as

oH
Jo=35th - (1. 27)

When relation (11.27) applies, there are some special
features of the solution of the linearized problem. These
will be developed later in the paper. A proof of Eq.

(I1. 27) can be found in Appendix A. Further discussion
of Hamiltonian aspects of the systems treated in this
paper is given in Appendices A and C.

The equilibrium distribution function can be ex-
pressed as an explicit function of constants of the mo-
tion for the equilibrium Hamiltonian,

O, p) =FHq, p, o), Ilq, p)].

One of the constants of the motion is HJq, p, ¢ ‘O] it-
self. In addition, the equilibrium distribution function
may depend on other constants of the motion, which we
label with an index % and denote by I%(¢, p); we denote
the set of invariants I% (g, p) by I (g, p). As is indicated
by the notation, we are now considering H to be an ex-
plicit function of ¢, p, and d)(o’. We have required in
Eq. (I1.20) that /" be an exact equilibrium solution.
However, we note that only a rather small modification
of the discussion in this paper would be required to in-
clude equilibria which are approximate due to at least
one of the constants of the motion 7%’ being an adiabatic
invariant instead of exact. In that case, we would allow
the right hand side of Eq. (II.20) to be O(e), where e

is a smallness parameter of the order of the perturba-
tion quantities. If an approximate constant of the motion
were a second-order adiabatic invariant, so that the
right-hand side of Eq. (II.20).were O(%), then our
formalism could be applied without change, as if the
constant of the motion were exact. In any event, if we
express f0) explicitly in terms of H, and I as in Eq.
(I1.28), then U, can be written as

U a}s[( aH)E PH, 0H, o
= 3H, |\ 3 ) 2 35T 5, 3q;

(I11. 28)

s A% %M,
2 o 2 { dq; ;00"

_31_""[ °H, 20 'H,  oH, a]
ap; Lag00™ " ag; FeTE T 35T ag; 1)

(11.29)
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A. Specialization to global invariants

A case of great interest and applicability is that in
which the invariant 7#)(q, p) is precisely p,, the momen-
tum conjugate to an ignorable coordinate ¢g,, for each
value of k. Thenfs(o’ is expressible completely as a
function of the Hamiltonian and of the canonical momen-
ta associated with spatial symmetries of the Hamiltoni-
an. In Sec. IV, we shall restrict attention to this case
and make use of special properties associated with it.
Specializing to this case, we take

ng)((Iy/)) :pk7

where p, is the momentum conjugate to an ignorable co-
ordinate g,, and write

fsw)(ra p) :}S[Hs(([:pa (z)w))’ {pk}]’

indicating that we consider 7, to be an explicit function
of H; and of conserved momenta p,. In order to simplify
subsequent formulas, henceforth we shall use the index
k exclusively for ignorable coordinates and their con-
jugate momenta, and sums over % should be understood
to run only over the ignorable variables. The symbols
¢ and p will continue to denote the sets of all the
canonical coordinates and momenta, nonignorable as
well as ignorable.

(11. 30)

(1n.31)

With this specialization, the operator U, is simplified
considerably. The derivatives a/%’/3g; obviously vanish.
In addition, because ¢, is ignorable, neither ¢’ nor
0H, /3¢ depends on q,, and their derivatives with re-
spect to ¢, vanish. Therefore U can be written simply
as

_ a}s[ oA, 0H, 0H, i]
Ys=7m, (L 36 ) 21355 3, g,
3, OH, 2
+7, £ 5 -
= 3p, 30" gy

(11. 32)

An interesting choice of the quantity P, in the trans-
formation (I1.7), discovered independently by Holdren,’
is

27, oH,
P, = o, W . (I1. 33)
With this choice, the operator W defined by Eq. (II.10)

becomes

ad
Ws:Us"‘Ps&—PsLs— (LsPs)

a}s[aﬂs 3 . 9H, dH
=Ug~

F ooy oty
H, 199" 5t 8¢'Y Z’ap 8q

(ﬂ Fs @ s D
a¢>(°> * dp, 3q, OH 0t)

In obtaining this expression. we have employed the fact
that W, acts only on field functions—that is, on functions
which do not depend on the momenta p;. Formally, this
choice of P, has explicitly brought out in W, the analogy
between time and energy on the one hand and conjugate
pairs of coordinates and momenta on the other. This
will prove especially convenient in Sec. IV for making
the Hermitian character of the dispersion matrix D
explicit. Physically,

(755

(11. 34)
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37, OH,
?H ad)( 0)

Pt = ¢t

would be the perturbation distribution function f ‘" that
solves Eq. (I1.1) if ¢>(1) were time-independent and also
independent of the ignorable coordinates ¢,. This is
evident because the condition for P 'V to solve Eq.

(11. 1) is W'Y =0, which is satisfied if (37,/3p,)(8¢' Y/
3g,) =0 and (37,/3H,)(3¢' " /3t) = 0. Thus the auxiliary
function g, defined by Eq. (II.7) with this choice of P,
is the nonadiabatic part of f(“, and this choice may be
expected to be useful for studying the low-frequency be-
havior of some systems.

HI1. THE INITIAL VALUE PROBLEM

We now turn to the solution of Eqs. (II. 8) and (II. 9)
for the evolution of the auxiliary functions g, and the
potential functions d)“’ The solution will be in terms of
Laplace transforms 2(w) and ¢V (w) of g,(t) and ¢V (¢):

gs(t) =2 edw e ™ g (w),  Zolw)= [t ei“tg (1),
(1M1 1)
)= fodt ¥t et D(1)
(113. 2)

qb(l)()“(ZT' fcdwe-i“tq‘g(h(w}, é)‘(l)(w

where C is a suitable Bromwich contour. The operator
W may contain the time differentiation operator 3/9¢,

but it does not involve time in any other way. Therefore,
(1

the Laplace-transform representation of Wy¢" "’ may be
written as
W' (1) = (2m) ! [odw e W (@) (w) + 8, ()],
(n1. 3)

where W (w) equals the result of substituting — iw for
8/0t in W,(1), and where ®,w) can be constructed from
&'P(t) and its time derivatives evaluated at /=0. The
operators A and J! do not involve time at all,

The equations for the Laplace transforms g,(w) and
'V (w) that are implied by Eqs. (II.8) and (I1.9) are
=W (w)d P (w) +[& (111. 4)

(Lo -iw]lg(w) = S{w) +g40)],

and

APV (w) =5 It (w). (I11. 5)

Equations (III. 4) and (III. 5) can be solved by first
eliminating & to obtain an equation for d>u’, and then
substituting the solution for & into Eq. (II1,4) to obtain
an equation for 2,. The result is

' Nw) =D Hw) 2 I —iw] o w) + g0, (I.8)
g0 =L = 10T W (DN w5 » JLIL o — 0]
X[ &g (W) + g (O +[L s— i) @ (w) + £(0)],
(111. 7)
where
D(w)=A -5 T —iw]'W(w), (111, 8)

The contour C for the Laplace transforms must be above
all singularities of »*(w) and Z,(w). In this connection
we note that Ls is anti-Hermitian, so that its eigenvalues
are purely imaginary. A simple general proof of the
anti-Hermiticity of / , is presented in Appendix C. We
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call D(w) the dispersion opevalov. It is independent of
the operators P (/) in terms of which A and W,{/) were
defined by Eqs. (II.10) and (II.11). That is, D(w) can
also be written as

D(w)=K(w) -2 J ML, - iw]0,(w),

where K(w) and Us(w) equal the result of substituting

- iw for 28/3¢ in K(/) and U,(¢), respectively. For com-
pletely Hamiltonian systems, it is possible to choose
the operators P, in such a way that the dispersion
operator D(w) is manifestly a Hermitian function of w.

This is discussed in Sec. IV.

(111. 9)

Although the Laplace transforms ¢ and 2, given by
Eqs. (III. 6)—(III. 8) are written quite compactly, the
expressions are in fact very complicated. The disper-
sion matrix and some features of the solution of the
initial-value problem are discussed in Secs. IV and V,
with particular reference to the case in which there is
at most one nonignorable coordinate in the equilibrium.
Typically (see Sec. V), because of the factor [/ —iw]™
in the second term in D{w), and since the operator /  has
a continuous spectrum of imaginary eigenvalues, the
solution can be written in terms of a continuum of gen-
eralized van Kampen modes along the real w axis, plus
contributions from poles (and other singularities if any)
in the complex w plane. If we approximate the problem
by choosing an N-dimensional representation of configu-
ration space, then the matrix D(w) becomes NXN, and
the contribution to the solution from the N-fold degener-
ate continuum of generalized van Kampen modes can
be written down in principle. If, further, we use an ap-
proximate finite-dimensional representation of the phase
space for each species, then if the operators W, (w) are
polynomial functions of w, the singularities of the
Laplace transforms will be a finite number of poles that
must be located and whose orders must be determined.
[An assumption that W (w) be a polynomial function of w
would not pose a serious restriction. For the examples
in Appendix B, ﬁ/s(w) is at most a cubic function of w, ]
We shall introduce such a finite-dimensional approxima-
tion scheme at the beginning of the next section. In that
case, there is another form of the Laplace transform
2,(w) that allows the poles to be located and their orders
determined by finding the zeros of a polynomial in w.
The degree of the polynomial may be large for any par-
ticular approximation; but the polynomial can be written
in a form that allows it to be evaluated practically even
when the degree is large indeed. This other form of the
Laplace transform is also interesting theoretically,
apart from its practical applicability to any particular
approximation scheme.

In order to obtain the new form of the Laplace trans-
form, we solve Eqs. (III. 4) and (III, 5) differently.
Instead of first eliminating g, we first solve Eq. (IIL. 5)
for ¢V in terms of 2,, and substitute it into Eq. (III. 4)
to obtain an equation for gs, then the solution for gs can
be used in Eq. (IL.5) to obtain $’, In order to carry
out this method of solution, we must concern ourselves
with the possibility that A has a zero eigenvalue,

Only the part of cf)‘” lying outside the nullspace of A
can be determined from Eq. (III.5). We shall see
shortly that A can be chosen not to have a zero eigen-
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value. This is the situation that we shall develop fully;
and, in the process, we shall obtain a final result that
does not require that A™' exist. For comparison, we
first describe briefly how ¢* could be found in terms of
the functions 2, when the nullspace of A is not empty.

Let ” be the projection operator for the entire null-
space of A:

PA=AP=0, (1-PA=A(-P)=A, P?=P.

The part of ¢ lying outside the nullspace of A can be
determined by projecting out the part of Eq. (III,5) out-
side the nullspace to obtain

A= P)dD ()] =20 - PWtg, (w).

This equation is in terms of quantities that are outside
the nullspace of A, and A possesses an inverse within
that complementary space. Now project out the part of
Eq. (III.5) in the nullspace of A to obtain

(II1, 10)

0=23,PJ18,(w) (IIL. 11)
This is a condition on the functions gs(w) which can be
used to determine ¢V from Eq. (III.4). By operating
on Eq. (II.4) from the left with 2J!, summing over s,
and using Eq. (III.11), we can obtain

[, PIIW ()PP ()]
=2,P0Y g, (w) =25 P&, (w) +g,(0)]
~[P3 I ()1 = PN = YD (w)].

This equation determines /°¢>‘” in terms of the functions
&, and the function (1 - )¢V which can be found from
Eq. (II1.10). In this way can ¢!’ be expressed in terms
of the functions g, when A has a nonempty nullspace,

(1. 12)

The procedure that was just described leads to an
unnecessarily complicated result and it is circuitous.
Let us see how to avoid that procedure by arranging that
A have no zero eigenvalue, The real motivation for
introducing the operator A was to have a field operator
whose eigenfunctions are particularly suitable for ex-
panding d?‘” for some specific problem. Suppose that a
suitable field operator, which we shall call A’, has been
found. Now note that (A’ ~5), where & is an arbitrary
complex constant, has the same eigenfunctions as A’,
Therefore, from the standpoint of representing ¢V,

(A’ - 6) is as good a field operator as A’, However, the
eigenvalue spectrum of (A’ - §) is the eigenvalue spec-
trum of A’ shifted by the constant —&. If A’ has a zero
eigenvalue, then & can be chosen such that (A’ - &) does
not. (If 6 is complex, A’ may not be Hermitian; this,
however, does not affect our development.) We now ask
whether operators P_ can be found such that

2 JP =0, (IT1.13)

in order that we can introduce
=\ =8)=A" -2 JIP

in analogy with Eq. (II.11). The operators P, are un-
derdetermined by Eq. (III. 13) because, although P, is
an operator that connects the configuration space and the
phase space, the equation imposes a condition only in
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the configuration space. Thus, Eq. (II.13) will general-
ly have infinitely many solutions. Some operators P
that satisfy Eq. (III.13) for examples discussed in Ap-
pendix B are given explicitly by Eqs. (B28) and (B42)

of Appendix B.

Now assume that A does not possess a zero eigen-
value and, therefore that A*! exists. The solution of
Eq. (II1.5) for ¢ is

SNy =2 ATTIE ()

$5s

(I11. 14)
and, by substituting this into Eq. (IIl.4), we obtain
ZAlL ~iwlo,, = W (@AY MG (w) =, (w) +£,(0)] (1L 15)

as the equation for determining the functions g (w). For
studying these equations it is helpful to introduce a
matrix notation in which the rows and columns are
labelled by the species index. A function with a species
subscript will be replaced by a column matrix denoted
by the unsubscripted symbol for the function. An oper-
ator with a species subscript which operates on a func-
tion in configuration space to produce a function in the
phase space for the species will be replaced by a column
matrix denoted by the unsubscripted symbol for the
operator, (Our convention is that such an operator does
not have a superscript dagger.) The adjoint of such an
operator will be replaced by the adjoint of the associated
column matrix (a row matrix). An operator with a
species subscript which operates on a function in the
phase space for the species to produce another function
in the phase space for the species will be replaced by a
diagonal square matrix denoted by the unsubscripted
symbol for the operator. For example, element s of
#w) is 7,(w), element s of W(w) is W (w), element s of
J"is JT, and the element of / in row s and column 7 is
Lsﬁsr'

With this notation we rewrite Eqs, (III.14) and (III. 15)
as

d D (w) = A3 w) (II1. 16)
and

Fw)=5"Nw)| ®(w) +£(0)], (I1.17)
where

S(w) =L = iwl] = WA, (111, 18)

and I is the unit matrix. For the sake of simplicity, we
now assume that W(w) is a polynomial function of w,
which implies that ®(w) also is a polynomial function of
w. This assumption includes the examples in Appendix B
as special cases. The form of (w) given by Eq. (III. 17)
is different than that given by Eq, (IIl. 7). Nevertheless,
the two are equivalent, and it is apparent that the
singularities of §(w) occur at those values for which
S$"(w) is singular. We now demonstrate the equivalence
of the two forms of g{w) by a method which will indicate
a practical means of finding the zeros of finite-dimen-
sional representations of S(w). In order to do that we
prove the following theorem.

Theovem: Let o and p be any operators that operate
on a function in a space R, to produce a function in a
space R,. The adjoints o' and p' operate on functions in
R, to produce functions in R,. Let I, be the identity
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operator in R,, and let /, be the identity operator in R,,.
If 1, - op']” is nonsingular, then

(2, = op'"' =1, + 0Apt],
where

A=, -p'a)™. (111.19)

The operator A operates on functions in R, to produce
functions that are also in R,

Proof:

Since we are interested in applications to problems
involving functions which can be adequately approximated
with a finite dimensional basis, we shall assume that
the spaces R, and R, are finite-dimensional and, there-

fore, that the operators can be represented by matrices.
Beginning with

(Iz - GPT)(IZ + UAPT) :]2 + U[([l - pr)A _[1]pT;
we see that the theorem will be proved if
(I,-p'o)A=1,.

This equation has the solution given by Eq. (IIT.19) if
(I, -p'0)™ is nonsingular. That it is nonsingular can be
seen by introducing finite-dimensional bases for R, and
R,, so that o and p' are rectangular matrices and A is
a square matrix. We now use the determinantal identity

detl{, - po) =det({f, —op". (I11. 20)

[This identity is of crucial importance for numerical
solution of the initial-value problem, it will be discussed
in a separate paper dealing with numerical procedures. "
Because ([, - op')™ was assumed to be nonsingular, and
because the identity (III. 20) is valid with any finite-
dimensional bases for R, and R,, we conclude that
{({,-p'0)™? is nonsingular. Thus, the theorem is proved.

The operator S "}{w) is nonsingular on the Bromwich
contour, if it were not, then the contour for the Laplace
transforms would have been chosen incorrectly. There-
fore, it can be evaluated by using the theorem that was
just proved. The result is

S-Hw) =1+ (/ ~ iwD) ' W(w)D™ (w) ']/ - iwl]™?, (1L 21)

which shows that Eq. (III. 17) and Eq. (III. 7) are equi-
valent. It is straightforward to show that Eqs. (III. 16)
and (I11. 6) for ¢! are also equivalent. Summarizing
our results so far for ¢’ and 2, we may write

&(w) =5 w)l s (w) +g(0)], (OI.17)
V(W)= A Ew) (1. 22)
=D W'/ - iwl] s (W) +2(0)],
where
D)= A=/ - iwI*W(w), (I, 23)

and where S(w) is given by Eq. (IIL. 18) and S™(w) is
given by Eq. (IL 21).

Now suppose that we have a finite~-dimensional repre-
sentation for S{w). Then det S(w) is a polynomial in w,
and the singularities of S (w) are poles located at the
roots of the determinantal equation

detS(w)=0.
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Writing
S)=[/ =iwL)L = - iwL) W(w) A,

where I, is the identity matrix with respect to the finite-
dimensional basis for the composite phase space of all
of the particle species, and using the determinantal
identity given by Eq. (II. 20), we can rewrite the deter-
minantal equation as

det S(w)=(det[/ —iwL |)det[l, - A™JT(/ —iwIZ)“I:V(w)])
= (det/ -iwL])(det[A™D(w)])
= (det A™)(det[/ ~iwI,{(detD(w))=0,

where I, is the identity matrix with respect to the finite-
dimensional basis for configuration space, Therefore,
the roots of the determinantal equation are the same as
those of the polynomial equation

(det[f —iwL]){detD(w))=0.

Note that this equation does not involve A™, nor do Egs.
(IO. 17) and (II1. 22) for the Laplace transforms. Thus,
we no longer have the restriction that A™ exist. Equa-
tion (III. 24) is computationally significant because it
provides a practical means of computing the roots of
det S{w), even when the degree of the polynomial is
large, as long as the dimension of the matrix D(w) is not
large. If A has been chosen appropriately, so that a few
eigenfunctions of A suffice to approximate ¢, then
those eigenfunctions can be used as the finite-dimension~
al basis for configuration space, and the dimension of
D(w) will be small. The matrix [/ - {wI,] has the dimen-
sion of the finite-dimensional basis for the phase space,
which may be large. However, by choosing a finite sub-
set of the eigenfunctions of / as the basis, we diagonal-
ize [/ - iwL ] and can compute its determinant easily.
Once the zeros of det S(w ) have been found, the co-
efficients of the inverse powers in the Laurent expan-
sions of Hw) and $*(w) about each of the zeros can be
evaluated and used to invert the Laplace transformation
to obtain g(¢) and ¢’(). An effective scheme for finding
the zeros of det S(w) numerically is a global Newton’s
method. Computational aspects of the procedure that
was just outlined for finding a discrete approximation to
the eigenfrequency spectrum associated with g{w) and

¢ () will be presented elsewhere.®

(1. 24)

IV. THE DISPERSION MATRIX
A. Expansions in eigenfunctions of A and /

As we noted earlier, it is useful for numerical pur-
poses to take eigenfunctions of A as a basis for
configuration space, and to take eigenfunctions of / as
a basis for the phase space. It is also useful for analy-
tical purposes to choose these bases.

The introduction of a basis for a linear vector space
requires the specification of a weight function with
respect to which an inner product in the space is defined.
In configuration space we define the inner product
(@, B) with respect to a real weight function I'‘®) of
position by

(@,8) = [ FrTa*s= (8, a)*, av.1)

where ¢ and B are arbitrary functions of position. Note
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that in general the symbol ¢ stands for an array of po-
tential functions ¢;; correspondingly, @, are in gene-
ral arrays of functions «;, §;, and the product a*g
stands for ©,0}8;. By a function in configuration space,
we mean a set of functions like ¢;(r). In the phase space
for species s we define the inner product (v, 8) with
respect to a real weight function I'#? of the phase-space
variables for species s by

(@,B)= [daT®a*g=(8, a)*,

where ¢ and § are arbitrary functions of the phase-
space variables for species s and d€? is the differential
volume element in the phase space for species s. Equa-
tions (IV.1) and (IV.2) define different scalar products,
one for functions in configuration space and one for
functions in the phase space for each species. We use the
same notation for each; it will be evident from the con-
text which is meant. We require that T'® commute with
A and that T'®) commute with /,, but the weight func-
tions are otherwise arbitrary. Useful choices for nu-
merical approximations are

TP =f" apg T =1,

Iv.2)

v.3)

We define eigenfunctions and eigenvalues of A and /|
by

An,=xm, (Iv.4)

and

(iv.5)

LS”’ST =t ‘U 577”57"

where, because of the anti-Hermiticity of /g, u,, is
real. The indices »# and 7 stand for whatever sets of la-
bels are needed to specify the eigenfunctions 7, and
ws,. Again, in general, 7, is an array of functions.
Some labels may be discrete and others may be contin-
uous. For numerical work it is appropriate from the
outset to define functions in terms of a representation
of the phase or configuration space that is spanned by
some discrete set of functions. That will ensure that
all operators can be represented by matrices and that
the labels for the eigenfunctions of A and /[ are dis-
crete. We choose the eigenfunctions #,, to be ortho-
normal,

(v.s)

(“"sn wsr') = 611’ ’

where here §,,. stands for a product of Kronecker deltas
and Dirac delta functions—one Kronecker delta for each
pair of discrete labels, and one Dirac delta function for
each pair of continuous labels. In Appendix D, the
eigenfunctions of / are discussed further, and they are
found explicitly for the case in which there is at most
one nonignorable coordinate in the equilibrium for
species s.

We assume that the eigenfunctions of A and /[ are
complete for the problem. However, A need not be
Hermitian, although it can be chosen to be Hermitian for
most problems. Because A may not be Hermitian, we
introduce a set of functions {, which are dual to the set

of functions 7,:
(gmnn')ZGnn'; (IV. 7)

where again 5,, stands for a product of Kronecker del-
tas and Dirac delta functions.
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The functions ¢'" and g, are expanded in terms of the
eigenfunctions of A and /, according to

o =2 a0,
and
2,0 =2y, Bhw,,,

where @,(f) and y (/) are coefficients that do not de-
pend on the configuration-space or phase-space vari-
ables, The summation symbols here represent sums
over all discrete labels and an integral with respect to
each confinuous label. With respect to these basis
functions, ¢'! is represented by the coefficients @ (f),
and g, (/) is represented by the coefficients 7, (#):

a () =(,, o V@), 7., =(u,, g,0).

In these representations, the operators [/, and A be-
come diagonal matrices:

(Iv.8)

(Iv.9)

(Iv.10)

Iv.11)
(v.12)

<T’ ILS | 7’) = (”'s/ ’ Ls”‘sr) = i“srérr' )
<7l, IA ! n> = (Cn' h) Ann) :ln 6lm' .
The dispersion matrix corresponding to the dispersion
operator, Eq. (I1I.8), is

i’ |1 | W) In) av.13)
r Hogp—w ’ .

<77’ lD‘rb:xﬂéym‘ +Z/

§

where we have used the notation
{n' IJ; vy =&, wy,),
W) |n) = (u,,, W (wh,).

(Iv.14)
(iv. 15)

(Recall that the operator J;' operates on a function in
phase space to produce a function in configuration
space, i.e., a field function, while W, does the con-
verse.)

We now specialize to the case of an equilibrium in
which the distribution function £{" is written as a func-
tion of the global invariants associated with the unper-
turbed Hamiltonian H,(q,p, ), as was discussed in
the latter part of Sec. II. The weight function T'¥’ in
Eq. {IV.2) must also be a funetion of the global invari-
ants. Since the operators A and [ are not functions of
the ignorable coordinates ¢,, they commute with the
operators 9/9g,. (As discussed in the latter part of
Sec. II, the index k will always be associated with ig-
norable coordinates.) Therefore the eigenfunctions 7,
and w,, can be taken to be also eigenfunctions of the
(anti-Hermitian) operators 3/8qy. [, also commutes
with the constants of the motion p, and H,. The eigen-
functions 7, and u,, can therefore be written in the form

M, = pa(@)M1,N;1/ 2o e, (1v. 16)

wsr:usr(Q3 P) 5(H5— Es)Hké(pk - pg)N;1/2eikqu> (IV' 17)
where @ and P stand for sets of nonignorable coordi-
nates and corresponding momenta, ik, are eigenvalues
of 3/9q,, p° and E, are values of p, and H,, and N;!/? is
a normalizing factor for exp(ik,q,). The index n stands
for a list which includes the eigenvalues «,; the index »

stands for a list which includes the eigenvalues x,, py,
and E,. The dual functions can be written likewise:

£, =2, (@M, N;l/ 2ot e, (v, 18)
If A is Hermitian, 2,(Q)=7v,(®). If we make the choice
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of P, given by Eq. (I.33), and use Eqs. (II.34), (V. 16)
and (IV. 17), then the matrix element (IV. 15) becomes

Gl W wh|n) =46 K _{(w)H! (Iv.19)

Srn ?
where

Kk’

J &l
K, (w)=TPN(E,, pj) [w%ﬁ 2y Ef%} H=Eg, byt
s 5=Bss Pp=p

r?

{Iv.20)

Hypy= [ 0008 2ty 81, ~ BN 0, i@
(Iv.21)
and o, is a product of Kronecker and Dirac delta
functions, where « is the set of eigenvalues included in
¥, and «’ is the set included in #. In the same way,
using Eq. (II.26), the matrix element (IV. 14) becomes

P ARTS LI (1v.22)
where
Tape = [dQAPT Y (Q, P, p,)O(H, ~ E,)
x 2% (Qu,, (@, P) (,Wg, (Iv.23)

and where we have assumed that /, does not depend
upon the ignorable coordinates g,.

The dispersion matrix (IV. 13) can now be written

K J* L H
' |D ]y =28, - 6“,25(”&_*5&_, s

o (Iv.24)
ST

where the notation (») means the sum is only over those
labels in » other than the «,, and where « refers to the
k. included in n, and k' refers to those in n’.

For a completely Hamiltonian system in which A is
Hermitian, z,=y, and ﬂs =3H,/2¢'" [Eq. QL 27)]; if
we also assume that =1, then

s =H' e (Iv.25)
In this case Eq. (IV.24) becomes
1{ HI* H’ "
W' |D[n) =20 = B2 iy AL(QJM'—. {iv.26)

Hep— @

We remark that with the choice (iI. 33) for P, A defined
by Eq. (IL.11) is manifestly Hermitian and A, is real.
[See Eq. (II.26), and note that, for a completely
Hamiltonian system, the field operator K(#) is
Hermitian. |

In the representation we have chosen, all matrices
are diagonal in the indices x, corresponding to the ig-
norable coordinates. We may therefore reduce the di-
mensions of all matrices by fixing the values of the
eigenvalues k,, and omitting «, from the indices. This
is the advantage of choosing to diagonalize simultaneous-
ly the operators 3/3¢,.

B. Hermitian property of D (w)

The matrix D(w) given by Eq. (IV.26) is evidently a
Hermitian matrix function in the sense defined in Ap-
pendix E,

DY{w) =D(w), {iv.2m

where D'(w) is the adjoint matrix function. [The adjoint
matrix function D'(w) is the adjoint of the matrix D(w)
calculated as if «w were real. | The properties of such a
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matrix are discussed in Appendix E and are used in the
next section, A particular property is that the roots of
the dispersion relation

detD(w)=0 (Iv.28)

are either real or occur in conjugate pairs, It can also
be shown that the equation

(| D(w,) |ny=0 @v.29)

gives a variational formula for the frequency w, of the
normal mode whose potential is given by the function
n,.'° By this we mean that, if », is an approximation of
order € to the normal mode potential, then the solution
of Eq. (IV.29) for w, will be accurate to order €,

The dispersion matrix (IV.26) is a representation of
the dispersion operator corresponding to a particular
choice of orthonormal basis functions. A unitary trans-
formation [even a transformation by a unitary matrix
function U(w)] preserves adjoints. It follows that the
Hermitian property (IV. 27) holds under any change of
orthonormal basis functions 7, in which we expand the
potential ¢‘'’, In particular, according to Eq. (III.9),
the operator D(w) is independent of the choice of P in
the transformation (II, 7)., The eigenfunctions 7, of A
[Eq. (II.11)] depend on P,, and hence different choices
of P, (including P,=0!) amount to different choices of
representation of the same operator D(w). Therefore,
the property (IV.27) must hold for the matvix D(w) re-
sulting from any choice of P,.. The choice (II.33) of P,
makes the form of the matrix D(w) especially trans-
parent.

C. Case of one nonignorable coordinate

The matrix D(w) [(Eq. (IV.24)] is diagonal in the in-
dices referring to the ignorable coordinates. If all co-
ordinates are ignorable, the eigenfunctions (IV. 16) and
iv.17) reduce to

Ne= HkN:/zeikqu:
u’gnp = (@P)21,0(, ~ pg)N;”zeikqu’

(Iv.30)
(Iv. 31)

where we have replaced the indices »n and » by « and
(k,p"). Note that in this case the energy is not an inde-
pendent constant of the motion, and we may take 7% to
depend just on the ignorable momenta p,.

The Liouville operator is

8H,
Li=2, NP (Iv. 32)
and
oH
P =2 K . 1V, 33
p kapk pepd ( )

All matrices are diagonal in the indices «; and the ma-
trix D(w) is completely diagonal, with diagonal elements

st/ [7 w()- (le

The dispersion relation (IIl. 24) requires for each x that
the matrix element (IV.34) vanish if w is not real; this

{k lD(w) I K)

=X-2 fdp/
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is the familiar form for the dispersion relation for a
homogeneous plasma.

We are interested in inhomogeneous equilibria, in
which case at least one coordinate is not ignorable. If
there is only one nonignorable coordinate, we can still
find the Liouville eigenfunctions wy,, as shown in Appen-
dix D. Since all matrices are diagonal in the indeces «,
we simplify the notation by holding the indices « fixed
throughout the remainder of the discussion, and omitting
them from the index lists » and ». We consider sub-
matrices corresponding to fixed values of x. When we
substitute Eq. (IV.16) in Eq. (IV.4), it becomes an
equation in one independent variable €, and the index n
is a single discrete or continuous label for the eigen-
values ), . The label 7 includes the ignorable momenta
p, the energy E, and an index labeling the eigenvalue
K, , as discussed in Appendix D. If there is more than
one orbit corresponding to the same {(p, E), we need
another index, a, to distinguish them. To simplify the
notation, we omit the index a, understanding that an
integral over E always implies also a sum over a.

The eigenfunctions u,, are given by Eqs. (D.17)
— (D.20). For periodic orbits,

Ugpp = T;},éz(rép))'lnexp[— iéspE(T)]exp(ilﬂspE 7),

(1v. 35)
1=0,x1,+2,.
where
Qe =21/T, 5, (Iv. 36)

T,y is the period of the motion in the (Q, P) plane,
and G,z (1) is given by Eq. (D23). The matrix elements
Iv.21) become

Hlpp=THHT®) /2 [q7y, aaH exp[zGS,E(r)]

¢ (Iv.37)
X expl- 182,z T),

where @ in y,0H,/2¢'" is to be replaced by Q(7 for the

orbit spE, The matrix element (IV. 37) is essentially

the Fourier transform of y"aHs/N)(o’exp(iGs,E). A simi-

lar expression can be written for J%x,,; in the complete-

ly Hamiltonian case, it is the conjugate of Hiyp1, given

by Eq. (IV.37), as noted previously. For aperiodic

orbits,

Usppu = @T) V2T P)1/2 exp[— iG e (T)]e™T,  (IV.38)

where [ is a continuous index, and G,z(7) is given by
Eq. (D.20), The matrix elements (IV.21) are

0H

Hip,,=Qm)VITY) szdTy,, 2

Iv. 39)
X expliG o p(T)]e ",
The submatrix D(w) can now be written as

G| D(w) |0’y = A8 s — Zs,fdpdEMﬁ;—'ﬁl"—'

1845 +Bspr -
£ ’
-3, [dpdEdy Kopr (O oru sppu

po-w

(Iv. 40)

b

where Q4;=27/T; is the frequency of motion in the
(Q, P) phase plane for the periodic orbit (E,p), and 8,z
is the quantity defined by Eq. (D.21)., Each element in-
cludes a sum over 7 for periodic orbits and an integral
over U for aperiodic orbits; the integrals are under-
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stood to run over the corresponding intervals in £ and
p. When there is only one nonignorable coordinate @,
orbits which are aperiodic in the (@, P) plane must ex-
tend to 1@1—=, {|P]—* would be a pathological case.)
Hence if the equilibrium orbits are confined to a finite
region in the (@, P) plane, they are necessarily periodic
and the last term in Eq. (IV.40) does not occur. Exam-
ination of Eq. (IV.20) shows that in the last term in Eq.
(IV.40), if it occurs, the integrals over p and E and the
sum over s can be carried out independently of the
value of w, leading to a particularly simple form in-
volving only an integral over i; unfortunately that sim-
plification does not arise in the second term.

We see that the elements {n [D(w) ln’) are analytic in
w except along the real axis. The last term, if present,
leads to a cut extending over the entire real w axis.
Each term in the sum over / and s leads in general to a
cut along that part of the real w axis where w/1 corre-
sponds to a frequency of periodic orbits present in the
equilibrium distribution. In the special case of simple
harmonic oscillations, when Q, =%,z is independent of
E and p, the singularity reduces to a pole at w=18,
+Bgz. I FIV(E, p) is constant over some region in
(E, p) space, Eq. (IV.20) shows that the cut along the
w axis for the second term in Eq. (IV.40) is not pres-
ent for the corresponding interval in [2,s . There are
other special cases. For example, if f{V(E,p) is
piecewise constant in £, and if Qg5 depends only on £,
the second term in Eq. (IV. 40) leads to simple poles in
w, If the integrals are approximated by sums, as for
numerical purposes, the resulting matrix elements
again have only simple poles.

V. PROPERTIES OF THE SOLUTION OF THE
INITIAL-VALUE PROBLEM

The solution of the initial-value problem is obtained
by inverting the Laplace transforms given by Eqgs.
(I11. 6) and (III. 7). We shall focus our attention on the
solution for the potential ¢‘”, The solution for the
auxiliary function g, could be obtained also; it leads to
somewhat greater algebraic complexity.

If we rewrite Eq. (III. 6) in the matrix form developed
in the last section, we may obtain the following equa-
tion for the potential coefficients a,,,

Zn’<% !D(w) Inl> (;n'(w) :In(w);

where the vector I,{(w) is determined by the initial con-
ditions

V.1

J?:rn[(ws'r’ q)s (w)) + '}’ST(O)]
i, - w)

In(w):Zs(r) . (V' 2)
In order to bring out the character of the solutions of
Eq. (V.1) for the potential coefficients @,(¢), without
involving ourselves in needless algebraic complexity,
we shall consider only the case treated at the end of the
last section of a completely Hamiltonian system with
one nonignorable coordinate, and assume that all equi-
librium orbits are periodic in the (@, P) plane, It will
be clear that most of our results apply also in the gener-
al case. For systems which are not completely Hamil-
tonian, those results which depend on the Hermitian
character of D{(w) may not apply. Using the notation
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introduced at the end of the last chapter, we hold the
ignorable indices k, fixed and restrict our attention to
the corresponding submatrices. The vector [, then be-
comes

I(w) :ESIfdj,dEM_)_ ,

i(IQp +Byr — w) v.3)
where
Ay (0) = T342 [ d7 expliGy o (1) lexp(= il2,5 7)
X [® () +g,(0)], (V.4)

where @ and P in the functions & ,(w)and £,(0) are to be
expressed as functions of p, E, and 7, The solution for
a(l) is obtained by solving Eq. (V.1) and inverting the
Laplace transform,

a,(f) = (2m)™ fc dw? | D (w) | 0') Ie (w)e e,

where the integral is over a Bromwich contour C paral-
lel to the real w axis, above all singularities of the
integrand in the w plane.

(v.5)

A. Van Kampen and Landau solutions

Because of the integ-als over p and E in Eqs. (IV.40)
and (V.3), the quantities (z|D{(w)|n') and I,(w) have cuts
on the real w axis, although they are not singular there.
In order to close the contour in Eq. (V.5) without
having to cross these cuts, we proceed as follows. Add
a contour C’ antiparallel to the real axis at Imw =—=,
The contribution to the integral from this contour evi-
dently vanishes. Now depress the contour C to the real
axis, while raising the contour C' to the real axis.

We are left with residues from the zeros of detD(w),
which occur at conjugate points in the upper and

lower half-plane, and an integral over the real w

axis of the discontinuity in the integrand across the axis.
The resulting solution has the general form,

(1) =7, A,C et evt + f{lu)ZaAa(w)C,,a(w)o‘i‘”. (V.6)

The terms in the sum represent the (discrete) normal
modes of the system. The coefficients 4; are complex
amplitudes depending on the initial conditions through

I (w). The coefficients C,, determine the character of
each normal mode b; that is, they determine the relative
amplitudes and phases by which each potential com-
ponent 7, participates in the mode b; they do not depend
on the initial conditions. Explicit formulas for the co-
efficients A and C will be given later, In the degenerate
case when two or more roots w, of Eq. (IV,28) coincide,
the corresponding term in the sum in Eq. (V.86) may
involve a polynomial in /., The integral is over the cut
along the real axis, and represents the van Kampen
modes, which are singular modes with real frequencies.
The real frequencies w are in general degenerate; that
is, there are many van Kampen modes at each frequency
w. The sum over a corresponds to this degeneracy. The
amplitudes A, (w) again depend on the initial conditions,
while the coefficients C,,(w) which describe the charac-
ter of the mode do not. Instabilities can only come from
the {discrete) normal modes. Phase mixing of the van
Kampen modes can lead to damping (e.g., Landau
damping).

If, for some value of the index n, the nth row and
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column of the matrix D(w) have no off-diagonal elements,
then it is easy to show that, corresponding to this in~
dex n, there can be no (discrete) normal mode on the
real axis with w coinciding with the frequency of any

van Kampen mode. | The element {z|D(w+i0)|n’) has a
finite imaginary part if A, (w)#0. ] This is the case, for
example, for a homogeneous plasma. In such cases, the
solution for a stable plasma consists only of van Kampen
modes. We have not yet proved the corresponding re-
sult when the nth row or column of the matrix D(w) con-
tains off-diagonal terms.

An alternative way to close the contour C, adopted by
Landau, is simply to depress the contour all the way to
negative imaginary infinity in the w plane. As the con-
tour C crosses the cut on the real axis, it enters a dif-
ferent Riemann sheet in the lower half-plane. On that
sheet, the integrals over E in Egs. (V.3) and (IV.40)
are defined by analytic continuation in w; that is, the E-
integration is carried out over a contour in the E plane
which is deformed so as to keep IQg,z + B, below the
point w. The resulting analytically continued D matrix
is no longer a Hermitian function of w. The resulting
expression for a,(f) has still the form (V. 6). It contains
a sum over normal modes, generally including Landau-
damped modes in the lower half-plane. The integral
over continuum modes is now to be carried out along
vertical cuts extending to negative imaginary infinity
from branch points on the real axis.

The Landau and van Kampen forms of solution are of
course equivalent. It is a matter of taste and conveni-
ence which is chosen. In the nonrelativistic, homo-
geneous case, if the distribution functions are analytic
functions of p and £, there are no branch points on the
real axis, and the Landau solution is simpler, the inte-
gral over van Kampen modes being replaced in general
by a sum over a few discrete Landau-damped normal
modes. However, in the inhomogeneous case, there
are in general branch points, so that the Landau solu-
tion also contains integrals around the vertical cuts,
which dominate the solution in the stable case. The
asymptotic form of the solution for a stable, inhomo-
geneous equilibrium will be presented in a later pa.per.1
The Landau form has the advantage of exhibiting ex-
plicitly the long-time behavior of the solution. The van
Kampen form has the advantage that it preserves the
Hermitian character of D(w) and hence the symmetry
between the upper and lower half w planes.

0

When these solutions are approximated in numerical
calculations, the integrals in Eq. (V. 3) and in formula
(IV. 40) for the matrix elements (z |D{w)n’) are re-
placed by sums. There are no longer any cuts in the w
plane, and the integral in Eq. (V.#8) is replaced by a
sum over discrete normal modes. (Refer to Sec. III for
some additional remarks about numerical approxima-
tions.) This sum is an approximation to the integral; if
the numerical approximations to the integrals in Eqgs.
(IV.40) and (V. 3) are adequate, the resulting solution
will be an adequate approximate solution to the initial-
value problem for some finite time interval. In such a
numerical approximation, the Landau sheet in the lower
half w plane is no longer directly accessible. The prob-
lem of identifying the Landau-damped modes in the
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numerical solution will not be addressed in the present
paper.

B. Discrete normal mode- typical (nondegenerate} case

We assume in what follows that the potentials can be
represented with sufficient accuracy by some finite
number N of eigenfunctions of A, so that the matrix
(| D(w) ln’y is of finite dimension NXN. We could evalu-
ate the reciprocal matrix D-'(w) in the standard way as
the matrix of cofactors of the transpose divided by the
determinant. The normal modes would then arise from
the residues at the roots of the dispersion relation
(Iv.28).

It is more convenient to invert the matrix D(w) by
first diagonalizing it,

U-Hw) D(w) U{w) =d(w), v.n

where d(w) is diagonal, with diagonal elements d,,(w).
The matrix U(w) which diagonalizes D(w) is a unitary
function in the sense defined in Appendix E. The column
U™(w) of the matrix U(w) is an eigenvector of D(w) cor-
responding to the eigenvalue d,,(w). If w, is a simple
root of the dispersion relation (IV. 28), then one of the
eigenvalues, say d,(w) will vanish at w=w,. The
reciprocal D-!(w) can be written, by making use of Eq.
(V.17), in the form

| DMWY w7y =27 | Ulw) |y Oom |U-Hw) [ #7)/dplw). (V. 8)

It is now evident from Eqs. (V.5) and (V. 8) that the
normal mode has the form given by a term in the sum in
Eq. (V.6), and that the coefficients are given by

Cop = (| Ulw,) | B)/d}(w,), (v.9)

Ay == i 2| UNw,) |n) I(wy), (V.10)
where

Aw) = ——aﬁg’:)“’) (V. 11)

C. The continuum--van Kampen modes

The integral over the real w axis in Eq. (V.86) comes
from the integral in Eq. (V.5) taken just above the cut
along the real axis minus the same integral taken just
below the cut. If we write the matrix D™*(w) in the form
(v.8), the coefficients 4, and C,, are

Co = 21) 0 | Ulw) | )/ (), (v.12)
Cryom=(Com)™, (v.13)
A =20 m [ UM (w) [n) I (w), (v.14)
A =2 ,n| Uw) | m) L(w - i0), (v.15)

where all functions of w are to be evaluated at the real
axis just above the cut, except for I,{w - i0) in Eq.

(V. 15), which is to be evaluated just below the cut. The
index m runs over the values 1,2,...,N corresponding
to the eigenfunctions of A, We have chosen to let the
index a=m [in Eq. (V.6)] correspond to the integral
just above the cut, and to let a=- m correspond to the
integral below the cut. In Eqgs. (V.13) and (V. 15), we
have used the fact that D{w) is a Hermitian function
(hence d,,(w) is a real function), and that U(w) is a uni-
tary function. The necessary modifications when this
is not the case are obvious.

H.R. Lewis and K.R. Symon 425



We could equally well have taken the inverse of the
matrix D(w) in the standard way. The resulting formu-
las would then have been

C o = @) n [2(w) | @) /detD(w),
A, =I(w),

(v.16)
(v.17)

where (1M (w) Im) is the matrix of cofactors of the
transpose of D(w), and the quantities on the right are

to be evaluated at w +i0 if =1, and at w—-i0 if == m.
Equations (V. 16) and (V. 17) correspond to another
choice of the degenerate modes.

When the Landau procedure for shrinking the contour
C in the integral (V.5) is chosen, the continuum part
of the solution plus the contributions from the poles
below the real w axis are rewritten as a sum of Landau-
damped modes, plus integrals over vertical cuts ex-
tending into the lower half-plane from branch points on
the real axis. The latter integrals can be written in a
form analogous to that given above for the van Kampen
modes. The result is a sum of integrals over a con-
tinuum of Landau-damped modes, each integral being
over modes with a discrete real frequency and a con-
tinuum of damping constants from zero to infinity.

D. Discrete normal modes—-degenerate case

By degenerale here, we refer to a mode or set of
modes corresponding to a multiple root w of the dis-
persion relation (IV. 28)., When the dispersion relation
(Iv.28) has an n-fold root w,, the integrand in Eq.

(V.5) will have an nth-order pole. The corresponding
term in the solution (V. 8) will then generally have an

(n — 1)st-order polynomial in t as the coefficient C,. An
exception occurs when the dispersion matrix D(w) has

n independent eigenvectors whose n eigenvalues each
have a simple zero at w,. There are then » independent
normal modes of the form shown in the first term in
Eq. (V.6), which happen to have the same frequency w,.
Otherwise, that is, if some eigenvalue of D(w) has a
multiple zero at w,, or if the corresponding eigen-
vectors are not independent, a polynomial in / will in
general occur in the solution, We shall not carry
through the corresponding calculations in this paper.

Degeneracies in the eigenvalues of the dispersion
matrix D(w) are discussed in Appendix E. They do not
ultimately affect the character of the solution given by
Eq. (V.5), as we see if we note that the inverse D-'(w)
can be written in the standard way without introducing
the eigenvectors of D(w) at all. However, if we write
D™ (w) in the form (V.8), then degenerate eigenvalues
must be taken into account. If the eigenvalue d,{w) is
n-fold degenerate at w,, then d,,(w) has in general an
n-fold branch point at w,, and the transformation matrix
U(w) has a 2n-fold branch point. (See Appendix E.)
These branch points do not occur in the complete sum
over m in Eq. (V.8), but they do occur in the individual
terms. We omit the details here. As pointed out in
Appendix E, the N-valued function d,{(w) has typically
double branch points at discrete points in the w plane,
wherever two eigenvalues d,,(w) coincide and the cor-
responding two Riemann sheets are stitched together.
Higher-order branch points are exceptional cases, as
are cases when a branch point happens to coincide with
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a zero eigenvalue. Since the sum in Eq, (V.#6) is over
points w, where d,,(w,) =0, we do not ordinarily need

to worry about this case. Note however that certain
methods of searching for zero eigenvalues d,,(w) may
involve encircling branch points. (Such methods are dis-
cussed by Holdren, " who, however, does not mention
the problem of branch points. )
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APPENDIX A: THE LAGRANGE AND HAMILTON
EQUATIONS IN VECTOR FORM AND
HAMILTON'S PRINCIPLE

In this appendix we give some basic relations that
pertain to the vector form of the Lagrange and Hamilton
equations of motion for a particle; and we write
Hamilton’s principle for a completely Hamiltonian
system in the form that is particularly relevant to the
formulation in Secs. III and IV of the linearized initial-
value problem.

For writing the Lagrange and Hamilton equations in
vector form, as well as for writing the Liouville opera-
tor or for discussing Hamilton’s principle, it is use-
ful to introduce gradient operators with respect to
velocity or canonical momentum variables. The detailed
meaning of any one of the various gradient operators
depends on what variables have been chosen as formal-
1y independent arguments for the function on which the
gradient operates. We consider functions which may de-
pend on the position vector r and on a vector that we
denote generically by 0. In our discussions, the vector
o may be a velocity vector, or it may be a canonical
momentum vector as defined in Sec. II by Eq. (I1.12)
or in this appendix by Eq. (A7). We assume that de-
pendence on 0 is explicit. However, in addition to ex-
plicit dependence on r, the function may also depend
implicitly on r through explicit dependence on the array
of potential functions ¢. There also may be dependence
on time, but it is not important for our discussion of
the gradient operators and we suppress it.

Let G[r, 0, ¢(r)] be an arbitrary function of formally
independent arguments r, ¢, and ¢{r). We define the
operators V, and V, such that the change 8G due to
infinitesimal changes Or and 80 is given by

8G[r, 0, ¢(r)]

=22, 01+ (Vo,) aﬁgf +06r v, Glr,0,¢]+00°9,G[r, 0, ¢]

1
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=6r+(v4) 20 + 679,615, 0, 0]+ 80, Glr, 0, 0.
(A1)

Thus V, is the gradient operator with respect to r hold-
ing the array ¢ and the vector o fixed, and VY, is the
gradient operator with respect to ¢ holding the array ¢
and the vector r fixed; V is the usual gradient operator
with respect to all occurrences, explicit or implicit,
of r.

For convenience, we choose an orthogonal coordinate
system whose unit vectors are &;(r), we denote the co-
ordinate of r associated with é, by q;, and we express
the derivative of r with respect to ¢; as usual in terms
of a function #,(r) by

ar ~

—— =h, ) A2

%, h;(r) 8,(r) (a2)
A result of this expression for r/dq, is

8g,="0r+Vq,= 057" (8,/n,). (A3)

1. The equations of motion

Each particle of species s moves according to an
equation of motion derivable from a Lagrangian
Llr, t, ¢(r,t)], depending explicitly on some potential
functions ¢;. These potentials are in turn determined
by the particle currents and densities. For example,
a particle acted on by electromagnetic forces only has
the Lagrangian

Lyr, b, o(r, )]=3M,1* - Q, &(r, 1) + (Q,/c) ¥+ Alr, 1),
(A4)

where the electromagnetic potentials ¢ and A comprise
the array ¢. Our formalism also allows L, to contain
other forces (e.g., external forces) that are derivable
from a generalized potential. The Lagrange equation
of motion can be written as

d oL

o Y L,-9. L~ (Vo) —851:0,
where the gradient operators are as defined by Eq.
(A1),

The Hamiltonian associated with the Lagrangian L,
is defined by

HJr,p, o(x,)]=p-r-L[r T, o(r, ],
where the canonical momentum vector p is defined by
p=V:LJr b, o(r, 1], (A7)

and where the arguments r, p, and ¢{r,#) of H, and L,
are considered to be formally independent. The canoni-
cal momentum vector is a vector generalization of the
scalar canonical momenta. Its components are closely
related to the usual generalized momenta p; defined by
9L

pj - a—é,;s_ 3 (AS)
where the variables q;, ¢;, and ¢; are considered to be
formally independent. The canonical momentum vector
can be calculated from Egs. (A7) and (Al); the result

(A5)

(A6)

1s
-~ (1\2L - (1
=%,8, () L = 1
P2 (5) 5 =208 () e (49)
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so that
pi=(;8)p.
Hamilton’s equations for a particle of species s with

position vector r and canonical momentum vector p can
be written in the vector form

(A10)

i‘:VpHs,

(A11)
. oH
p:—V,Hs- (V(b) E; .

The gradient operators are as defined by Eq. (Al).

The form of Hamilton’s equations given by Eqs. (Al1)
is completely equivalent to the scalar form
?H,
ap,’

, _ BHg 0¢; 0Hs
Pi="%q, " ~iag; 90y

qj =

(A12)

where H; is considered to be an explicit function of the
variables q;, p;, and ¢;. This can be seen by writing
out the components of Egs. (A11). A convenient way to
obtain expressions for the gradients of H; is to write the
variation of H; as

9Hs 0Hs 0H s
(z)i +ZJ.<6(Ij + épj ):

OH_ =) 01 .
s Zi r(Vd),)a oq Bpj

substitute expressions for 6g; and p; in terms of or
and 6p from Eqgs. (A3) and (A10), and compare with
Eq. (A1), The resulting expressions for V.l  and V H
are

~ {1\ 0Hs n o0Hs
VrHs :Zj[e,(h—)@ +(Vh,ej) 'QE]
. [ 1\0Hs n ~f1 .
:Zj[e,(—h )— +(vn,8,) -Z}iei(h—i)mqj] ,

1194,

Using this expression for Vv H,, the first of Egs. (A11)
can be written as

PR «~ , 0Hs
ZJ.ejhjqj :Zjejhj—ap—j 3

which shows that the jth component of the first of Eqgs.
(A11) is &, times the first of Eqs. (A12). In order to
show the equivalence of the second of Eqs. (A11) and
(A12), we write p as

. {1\ . é
b= [o(i )i eni ()]

. 1\, e _[€
oz <)
and use the above expression for V_ H, in the second of
Eqs. (Al1). We then use the identity

Z}P:Zf’liéiéi . V(:—j}* 2.5(Vh, ;)2 & <hl1) Py

==20, 0id, (hy8,) % [V X (%)] =0

1

to obtain that the jth component of the second of Egs.
(A.11) is 1/h, times the second of Egs. (A.12).
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2. Hamilton’s principle for a completely Hamiltonian
system

The Langrangian for a completely Hamiltonian system
consistes of two parts,

L=L; 4+L (A13)

rarticles

where L;,.i.;e includes the interaction of the field with
the particles, The quantity L;;,,4 has the form

3
Lijera= fd T, tieras

where the Lagranian density /4,4 is a functional of the
potential functions ¢, {r, /) and their derivatives, and,
possibly, an explicit function of r and / in addition.
Varying the time integral of L, 4 with respect to ¢
gives rise to the exact, perhaps nonlinear, field opera-
tor on ¢ that corresponds to the linear operator K in
Eq. (IL.2). That is,

(A14)

t
6]; 2Lf1e1ddf:(3]t:2 df fdsr Lﬁeld
|
, B (A15)
:Ziftiz dai fd3r[K¢]iéq§i,

where K is the exact field operator.

In order to construct L,,,(c1e, W€ introduce a func-
tion Ry(r’, p’, {) as the position vector and a function
P.(r’, p’,t) as the canonical momentum vector of a
particle of species s at time { whose initial position and
canonical momentum vectors are r’ and p’, respectively.
The quantity L, ;.. is then given by

Lvarticle :Z sfd3r, d3p,fs(r'i p,; O)
x{P (', p', ) Ry(x’, p', )
_Hs[Rs’ Ps: d)(Rs: f’)]}:

where 7,(r’, p’, 0) is the initial canonical phase-space
distribution function. The quantity in curly brackets is
just the single-particle Langranian expressed in terms
of canonical variables. The quantities to be varied in-
dependently are P, R, and ¢. Variation of the time
integral of L ;. With respect to P, gives

t
6Ps ftiszarticle dt

(A16)

t (Aa17)
= ftiz dl‘fd3r’d301f5(r’, o, 0){Rs _ VPSHS}. 51)8.

Variation with respect to R,, requiring that 6R, vanish
for t=1t, or 4, gives

t
6Rs ft: Lparti cled/

- :fdt [dr'dp'f ', p',0) (A18)

. 2
x <Ps + Vg Ho+25(Vr $1) o ) R,
i
Variation with respect to ¢ gives
60 ftz LDarticle dt
t
1

oH
=—Es f dsr, d3p’fs(r,’ p,: O)Ei =

a¢i 5¢i(Rs: t)

=-2, [ drdof,x, 0,07, —g—% 5, (x, 1). (A19)
i
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In the second line, the arguments of H are R;, P,,

and ¢(R,, #); in the last line, the arguments are r, p,
and ¢(r, f). In order to obtain that form of the variation,
Liouville’s theorem was used to make a change of vari-
ables of integration. The reason for expressing the
Lagrangian in terms of position and canonical momen-
tum, instead of in terms of the more usual position

and velocity, is to ensure that Liouville’s theorem can
be used to change the variables of integration in this
way. In most cases of interest, the analogous change of
variables could in fact be made in terms of position and
velocity, However, because we allow the possibility of
generalized potentials in L, ¢ic1., there are cases for
which position and velocity variables are unsuitable.
Some further discussion of the difference between posi-
tion and canonical momentum variables on the one hand,
and position and velocity variables on the other, can

be found in Appendix C.

By virtue of Eqs. (A15) and (A17)—(A18), we see that
Hamilton’s principle.

éftzz Ldt=0, (A20)
used with the Lagrangian specified by Egs. (A13),
(A14), and (A16), implies Hamilton’s equations of
motion (A11) or (I, 17) for the particles. It also im-
plies the equation
= oH
Rolr,n=2, [d’p 7.
in which the arguments of H, are r, p, and o(r, /). It
is apparent that linearization of Eq. (A21) will lead to
an equation of the form (II. 2), the basic linearized field
equation with which we began, and that the quantity
JHAD is correctly expressed by Egs. (II. 26) and (II. 27),
in which the arguments of H, are r, p, and ¢ (r).

f(r,p, 1), a21)

APPENDIX B: THREE EXAMPLES OF THE
FORMULATION

In this appendix we formulate the basic equations for
three plasma systems as examples of the fundamental
equations that were presented in Sec. II. Gaussian units
for electromagnetic quantities are used throughout.

1. One-dimensional electron gas

The exact, nonlinear Vlasov—Poisson equations for a
a one-dimensional electron gas in a fixed ion background
of number density n,(x) are

o U e300
8_f_+ 8x+m ox 817"0’ (B1)
"g%f =4rel [flx,v, ) dv —n,(x)], (B2)

where f is the electron distribution function in the phase
space of position and velocity, ¢ is the scalar potential,
m is the electron mass, e is the ion charge, and -¢

is the electron charge. The linearized equations

for small perturbations 1! and ¢‘» about an equilibrium
distribution f© and potential ¢‘© are

af(l) af(l) e d¢(0) af(l) e af(o) ad)(l)
ot v ox m dx v m v ox (B3)
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(B4)

These equations correspond to Eqs. (II.1) and (II.2).
Because the plasma system is completely Hamiltonian,
the right-hand side of Eq. (B4) corresponds to Egs.
(I1. 26) and (I1.27).

As an illustration of the introduction of an auxiliary
function g to replace the perturbed distribution function,
we choose the auxiliary function in the particular way
discussed in Sec.. II in connection with Eq. (II. 33).
Letting the equilibrium distribution function be a function
of the total energy, f ¢ =f‘[e(x,v)], where

e=smv? —ep!Mx), (B5)
we define g by
FO%, v, D=glx,v,t)—edV(x, 1), (B86)

where f©¥(c)=3f ®/3¢. The equations for g and ¢

are then

(1)

(56; +L)g=ef‘°)'(e)§i§t—, (BT

AV = ef glx, v, D) dv, (B8)
where

[(x v)—vi + & d¢>(°) 2 (B9)

TV Tm dx A’
5

47A =— a—-z + 12 p(x), (B1LO)
and

B (x) == ame® [ £ dv. (B11)

Notice that £ (x) =1/2%(x), where Ap(x) is the local
one-dimensional Debye length for the equilibrium,

2. Three-dimensional multispecies plasma

In this example we use the position vector r and the
canonical momentum vector p as variables, and write
the equations in terms of the canonical phase-space
distribution functions f£,(r, p, f). In addition to the elec-
tromagnetic scalar potential, ¢{r,?#), we now include
the electromagnetic vector potential, A(r,¢). The
canonical momentum vector for a particle of species
s is defined in terms of the velocity v according to
Eq. (II.12) by

o= Mv+ A(r, 1), (B12)
The exact equations for the system in the Coulomb
gauge, V°-A=0, are

3 1
—ééi + M; ( - % A) .vrfs"Qs(V(t))nvﬁfS
+ ]%E (Vofs) " (VA) - (p— % A) =0, (B13)
—Vz(b =4NZstfd3pfs(r, P, t) (B14)
1 %A 1_2¢
ﬁA*ﬁE?-zVE?
=-41%, 2 [a'p ( ) 4,0, 0). (B15)
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The particle Hamiltonian for species s is

2
Ho— L (_QA) +Q,0.

=9, (B16)

We choose the array of potential functions to be

¢*(i),

so that
Qs 0 0
2Hs 2°H
it - )a) T\ i
3 - = p-——)A}b 3 0 .17
é M. c ¢ Mc

where 1 is the unit dyad. The linearized equations for
this completely Hamiltonian system, corresponding to
Eqgs. (II. 1), (I1.2), (I1. 25), and (II, 27), are

(&3]

¢
3 , B17
(5“)":“:%(#0) o1
¢(1) Qs
K =2, [d £P(r,p,t)
A(I) s J s » My
- - )
—Z‘SJ:f.;i) (B18)
where
LD :—’1}7 (p— % A(O)) A - Q,(0®) v, A
+ Lo (v, A1) (vAD) - (p— -QSA“”) (B19)
Mg ®7s c ’
o
U\ g ) = 25|+ L, 4 (oa)|- a0
q
+Qu, £ Vo - (9, )
°(VA(1))°<p— % A(O)) , (BZO)
1 - v 0
K=— (B21)
4m | 18 . 1 3% 1 ) |7
~oVar V-Farm a2 ek
and

4 2
W(r) =% [ atp f0(r, p).

Note that the operator K given by Eq. (B19) involves
t because of the operators 3/3t and 3°/9*. We now re-
place K by a completely time-independent operator A
by introducing a particular set of auxiliary functions
gs as in Eq. (L. 7),

[§8)
g, 0,0 =£"(r,0,0)- P, [ (B22)
A(i)
where
¢(1> 3 2 .,5_( w1 aA‘“)
Py | ptn =F)ve 5 Ve U+ T
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(8}

2\ o O
=~F (*)v Y

(B23)
1 @s A
— s
v_Ms (p c AT ),
and F, is an arbitrary function normalized such that
1=4aNM2Q, [ d®v F (s*)vv, (B24)

where N is the total number of particle species. Note
that the auxiliary functions differ from the one defined
by Eq. (B6). The resulting equations for g, and the
potentials are

Gl $9] J [$3]
(?3_1 +Ls)gs':—Us (i(i)) - (a +Ls> P, <i(1)> ’ (B25)
Qg
A(fbm) > fdo | @ o . 0.0)
a = s $ S s r,p, i,
AW —ﬂ'_I:?<p—?A(0)(r>
(B26)
where
_y? 0
1 1 B2
A=pe |0 V-5 XL (B27)

In Sec. III we asserted that operators P, could be
found whose effect on A would be to subtract an arbi-
trary constant 8. For this example, subtracting a con-
stant 6 requires

tp {1 o>
ZSJSPS_6<0 1. b

where J! is defined by Eq. (B18). A set of operators P
that satisfy this equation are given by

) 1 2
P, (d‘;(l)> :4n6M§cst(v2)[§ (%) o'~ (%) 'A“’] ,
(B28)

where F, is an arbitrary function normalized according
to Eq. (B24).

3. Vlasov-fluid model

The Vlasov-fluid model is a low-frequency model for
an ion—electron plasma in which the ions are treated as
collisionless and the electrons are treated as a mass-
less, pressureless fluid. % The equations for the model
are

E+lue><B=0, (B29)
c
VXxE=-1 @, (B30)
c 9t
3 Q 1
—a§+V°V,f+ﬁ(E+Ev><B)°V,f=O, (B31)
(v><B)><B:47erd3v(E+%va)f, (B32)

where u, is the electron fluid velocity, f(r,v,?) is the
ion distribution function in position-velocity space, @
and M are the ion charge and mass, E=-V¢

- (1/c)3A/3t, and B=VxA, We assume an equilibrium
in which the ion distribution function is a function only
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of the particle energy e,
flx,v) =7,
e=5iMv* + Q¢ V(). (B33)

Then the linearized equations for the Vlasov-fluid model

can be reduced to

(Z +£) 0 =-gror @v-m (B34)

and

:11; [(¥xB©)x B + (7x B)x BD] - @u®ED
1 )
— sy (R0 4 1 ) An
_Qfdv<E +-VxB 7

:JTf(l), (B35)

where
Q 1
L(r,v):v-vrﬁ-n—/l— <E‘°’+—v><B‘°’>-v,, (B36)

c
n(O)(r) — fd3v f(O)(e),

and

, B df(f))
) = .

We now choose a gauge defined by

B® - AD ¢, (B37)

(This gauge restricts the type of perturbation that is
allowed, but the restriction is not serious. %) Equations
(B29) and (B37) imply that the perturbation potentials
oM and AY, from which E'’ and BV are derived, can
be expressed in terms of a displacement vector & by
the equations

A(I) :ExB(O) and ¢(1) =E(0) . E;
where

£-B" =0,
We take the array ¢ of potential functions to be the
vector E, and consider Eqs. (B34) and (B35) to be
simultaneous equations for j“) and § corresponding to

Egs. (. 1) and (il 2). The left-hand side of Eq. (B35)
is a linear operator acting on ¢ which involves a/at.

In order to transform the linearized equations to the
form that has been used! for studying certain screw-
pinch equilibria, we introduce an auxiliary function g
by

AN g <Mv.g_t§ —Q¢(1)> FO(e). (B38)
The equations for g and £ are
<'a§i +L> g=MF"" v (‘a% +v-v>g§ (B39)
and
F(£)=q [d’ (E“” + % vX B‘°’> g, (B40)
where
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F(E)E (1/477)[(VXB(0))XB“) + (VXB(I)))(B(O)]

+v(EvpY] (B41)

and
pO(r) =4 fd3v MO ().
The relation
On'OE©® —ppt®
and the identity
M () = (W fOW =9, (F Dv) - £ 01

are useful in deriving Eq. (B40). Notice that the Vlasov-
fluid model is not completely Hamiltonian; the right-
hand side of Eq. {B35) cannot be expressed in the form
of Egs. (II.26) and (I, 27).

As was stated in Sec. III in connection with the inverti-
bility of the field operator A (which we have denoted by
F is this example), it is possible to construct an opera-
tor P whose effect on the field operator is to subtract
an arbitrary constant 8. This will be true if P satisfies

B(O)(r)B(O) (r) .
JP=5 (1 - W)

- 1 6y @) .
_—6'5(372'(?)[]3 (r)XlXB (I’)] .
The right-hand side of this equation is § times the pro-
jection operator onto the plane perpendicular to B¥(r).
It is well defined for all values of r because B (r)
must not vanish anywhere in the Vlasov-fluid model. An
operator P which satisfies the above equation is given
by
1
PE(r,t)=- GG(vZ)W) BV (r)xv]- &(r, 1), (B42)
where G(vz) is an arbitrary function normalized such
that
1 :9(— [ v G ). (B43)

APPENDIX C: PROOF OF THE ANTI-HERMITICITY
OF THE LIOUVILLE OPERATOR

The Liouville operator / is used to calculate the time
rate of change of a function of phase-space variables
and time due to variation of the phase-space variables
according to the particle equations of motion. If we let
G be an arbitrary function of phase-space variables
and time, and if the phase-space variables change with
time according to the equations of motion, then the
total time derivative of G is given by

aG

7[:(5+LG:<§}+L>G, 1)

where G=3G/at.

We consider a region & in (r, p) space which is trans-
formed into itself under the equations of motion. The
region Q could be the entire phase space, or any invari-
ant region thereof. An important case occurs when the
Hamiltonian is periodic in the phase space. We may
then restrict our attention to functions G(r, p) which
have the same periodicity, We choose one fundamental
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period € in the phase space, and we reduce the phase
space to a “cylinder” by identifying every other period
point by point with the fundamental period. The region
Q thus defined satisfies the above conditions. We now
prove the following theorem:

Theovem. The Liouville operator / is anti-Hermitian
in § with respect to any weight function that can be
expressed as a function of constants of the particle mo-
tion that do not depend explicitly on time.

This theorem is purely a result of the fact that
Liouville’s theorem applies to the particle motion, as is
guaranteed because the motion is Hamiltonian, In order
to prove the anti-Hermiticity in €, we begin by defining
a transformation from variables (r’,p’) to variables
(r, p) by

r=R(r",p',1), p=P(',0,1), (€2)

where R(r’, p’, 1) is the position vector and P(r’, p’, f) is
the canonical momentum vector of a particle at time ¢
whose initial position and canonical momentum vectors
are r’ and p’, respectively. This transformation exists
and possesses an inverse because R and P are the
solution of a Hamiltonian system of equations. Another
result of the Hamiltonian character, a crucial result,
is that the Jacobian of the transformation is unity. Now
consider a function /(#) which is the integral over £ of a

function G(r, p, £},
I(t):fﬂ Erd®pGlr,p, ). (C3)

The only further restrictions on G are that this integral
exist, and that the gradients of G with respect to r and
p exist and be integrable. The time derivative of I(f) is

dl .
= f9d3r depGlr,p, ). (c4)
However, dI/dt can be expressed differently by changing

variables of integration in the definition of I(#) from
(r, p) to (r', p’) according to Eq. (C2),

HOE fﬂ v’ &p' G[R(x', p’, 1), B(x’, o', ), ¢]. (C5)

Thus, we can use Eq. (C1) to write dI/dt as
il_ d3 1d3 fé[RP }+fd3/ 31[_‘R [R
d[-fg ' d’p P11+ [ dr'dp (R, P]G[R, P, ¢].

Transforming back to variables (r, p), we then have

dl - :
= fQ Frd®pGlr,p, 1) + fQ drd®o [(r, p)C(r,p,t). (C6)
Comparing Eqs. {C4) and (C6) we find

j{’1 &rd®p [(r, p)G(r,p, 1) =0, €7

We now let the arbitrary function G(r, p, f) be given as
G(r, p, t) =w(r, p)f*(r, p, Ng(r, p, 1),

where f and g are arbitrary functions and w(r, p) is any
real constant of the particle motion that does not depend
explicitly on ¢, so that [(r, p)w(r, p)=0. Because /(r,p)
is a first-order differential operator we have

L(x,p)G(r, p, ) =wl(r, p)[f*(r,p, [ (x, p)g(r, p, )
+glr,p, DLz, p)f*(x,p, 1]
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Substituting this into Eq. (C7), we finally obtain
L drd*pw(r, p)*(r, p, L (r, plg(r, 0, t)

== fn dardap w(r, p)g(r, a1 ”L(r; p)f*(r: P, t)

=-[[ @rd’pw(r, p)g*(r,p, )L (r, p)f(r,p,)]*, (C8)
which proves the anti-Hermiticity of /.

The above general theorem applies in particular to the
equilibrium Lijouville operator / introduced in Sec. II.
The operator / is the same operator whether G is con-
sidered to be a function of position, velocity and time
or a function of position, canonical momentum and time.
The reason is that the equilibrium transformation
between position and velocity variables on the one hand,
and position and canonical momentum variables on the
other hand, does not depend explicitly on time, so that
9G/3t has the same meaning with either set of vari-
ables. Expressed in terms of the position and canonical
momentum vectors r and p, the operator /; is
Lte, )= 19,89, (7,1, + 56) ) -9, (c9)
where H_ is the equilibrium particle Hamiltonian for
species s and is considered to be a function of formally
independent arguments r,p, and ¢‘” (r). The notation
is explained in the latter part of Sec. II and in Appendix
A. The expression for [, in terms of the position and
velocity vectors is given by Eq. (I.5).

[, is usually anti-Hermitian in (r, v} space as well
— but not necessarily. In analogy with Egs. (C2), we
define a transformation from variables (r’,v’) to vari-
ables (r,v) by

r=R"(, v, 1), v=f{;°’(r',v’,l), (C10)

where R;o’ is now considered to be a function of the ini-
tial position and velocity vectors and time. Although this
transformation exists and possesses an inverse, the
Jacobian of the transformation may not be independent of
t. In order to examine the Jacobian more closely, we
represent the transformation as the result of three
successive transformations: first a transformation from
(r’',v’) to (r’,p’), followed by a transformatinn from
{(r’,p’) to (r,p), followed by a transformation from
(r, p) to (r,v). The Jacobian of the total transformation
is the product of the Jacobians of the three successive
transformations, The transformation from (r’, o) to
(r,p) is canonical and its Jacobian is unity. Let
T(r,v, ) be the Jacobian of the transformation from
(r,v) to (r,p) at time {, Then the Jacobian of the total
transformation is

alr,v)  afr,v) alr,p) al’,p)

a(r’,v') alr,p) alx’,p) alr’,v')

_afr,v) o{r’,p’)
“alr,p) alr’,v)

— T,s(r’,v'7 0)

Tdr,v,0) "’

(C11)

The Jacobian T (r,v,t) is the determinant of the matrix
of coefficients of the dyad V p=V V L with respect to
the unit vectors of a Cartesian coordinate system,
where L is the particle Lagrangian, This is easy to
show. If the Lagrangian has the form
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Li=v-A'v+v:B(r,)+C(r,1), (C12)

where A is a constant dyad, and B(r,{) and C(r, ¢) are,
respectively, arbitrary vector and scalar functions of
r and {, then T(r,v,?) will be independent of r,v and #,
and 3{r,v)/5(r’,v') will be unity. The Langrangian is of
this form if the forces are all electromagnetic. How-
ever, with more general velocity-dependent potentials,
the Lagrangian may not be of this form, and 2(r,v)/
3(r',v’) could depend on time,

If the Jacobian a(r,v)/3(r’,v’) is time-independent,
then the proof of anti-Hermiticity of / in (r, p) space
that led to Eq. (C8) can be carried through in a quite
analogous way for (r,v) space. The result is

fQ &r d®v wlr, v (r, v, L (r, v)g(r, v, )
=~ [ [, drdvwlr,v)g*(x,v, )L (r,v)F(r,v,H]*, (C13)

where /[ (r,v)w(r,v)=0, and € is the domain of integra-
tion in (r,v) space.

APPENDIX D: THE EIGENFUNCTIONS OF £,

As indicated at the end of Sec. III, it is useful for
numerical and analytical purposes to expand functions
of the phase-space variables for species s in terms of
eigenfunctions of the equilibrium Liouville operator /.
In Secs. IV and V, the structure and properties of the
dispersion matrix for the case in which there is at most
one nonignorable coordinate in the equilibrium are dis-
cussed by examining expressions for the matrix elements
that are obtained from exact expressions for the eigen-
functions and eigenvalues of /,. In this appendix we
first demonstrate the existence and completeness of the
eigenfunctions of /., and we indicate a possible scheme
for approximating them in the general case. Following
that we derive expressions for the eigenfunctions and
eigenvalues of / when there is at most one nonignorable
coordinate in the equilibrium.

In accordance with Eqs. (IV.5) and (IV.6), we write
the eigenvalue equation as

Ls"'sr ST (D1)

where pg, is real, and we impose the orthonormality
condition

(“"sr: Wy ) = 571‘ . (D2)

The label 7 on g, and g, stands for the set of whatever
discrete and continuous labels are required for specify-
ing the eigenfunction and eigenvalue; the symbol 6.
stands for a product of Kronecker deltas and Dirac
delta functions— one Kronecker delta for each pair of
discrete labels, and one Dirac delta function for each
pair of continuous labels.

Elsewhere in this paper, particularly in Sec. II and
Appendix A, we have considered the equilibrium parti-
cle Hamiltonians to be explicit functions of the equilibri-
um potentials, and we also have allowed the possibility
of additional explicit dependence on the coordinates.
This was done to facilitate the discussion of completely
Hamiltonian systems. However, in this appendix, the
concept of a completely Hamiltonian system is unim-
portant, and it is more convenient simply to regard the
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equilibrium particle Hamiltonian for species s as an
explicit function of the particle coordinates ¢, and their
canonical momenta p,. In order to avoid confusion, we
use the notation #/,(g,p) for the Hamiltonian expressed
explicitly in terms of the variables ¢; and p,,

/_/S(q, p) EHS[r! p’ (b(())(r)]’

where H is defined by Eq. (II. 16) or (A6). The equili-
brium equations of motion are the usual

(D3)

H s
0q;

. _ o,

q;= 2, ’

In order to demonstrate the existence and complete-

ness of the eigenfunctions w,,, we show how they could

be determined in principle from a complete knowledge

of the equilibrium particle trajectories, The Liouville
operator can be written

[.=D (8/13 o s 8
s I\op; g, 3q, 3p;)°

Define a set of 2n—1 independent functions 7,(q, p) sat-
isfying

Lsni(q’ p) = O?

where » is the number of coordinates g;. The functions
1; are constants of the particle motion which do not
depend explicitly on {, An arbitrary function of the set
of 2rn — 1 functions is the most general solution of

L #(g,p) =0. The phase-space trajectories of the equi-
librium particle motion are given by the equations

by=- (D4)

(D5)

(D6)

T)i(q,p)=cu (D7)

where the quantities ¢; are constants. They can be
labeled by the values of the 2n -1 constants ¢; along with
the values of an integer variable @. The integer a is
used to distinguish disjoint curves that correspond to
identical values of the constants ¢;. For example, with
one-dimensional motion, there may be more than one
trajectory associated with the same value of the total
energy. The location of a point on a trajectory can be
specified conveniently by the time, 7, that it would take
for an equilibrium particle to move to that point from a
reference point on the trajectory. The sign of 7 deter-
mines whether the particle would move in a positive or
negative sense along the trajectory. The time T is re-
lated to the arc length, 0, between a point and the ref-
erence point by

do\? o £
(8) <z +i

[ ()]

We now change variables from (g, p) to 7, the integer
variable a, and 2n— 1 variables y; =n;(q, p). In terms of
the new variables, [, is

2
2T’

(D8)

Ls= (D9)

and its eigenfunctions, the solutions of Eq. (D1), are
wsr(a, Vis e ooy Vonats T)

:dsréaa’ 6(3)1 - ci) o0 5(y2n..1 - CZn'i)exp(iusrT)’ (Dlo)
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where the label » stands for the set of labels
(@,c1y...,Con1, k'), and d, is a constant chosen to
normalize the eigenfunction according to Eq. (D2). The
eigenvalue p, is real; its value is determined by the
nature of the phase-space trajectory. If the trajectory
is closed, then the eigenfunction must be periodic in 7,
so that only certain values of i, are allowed. The al-
lowed values may depend on some or all of the constants
a and c¢;, and on an integer index p’. If the trajectory
is open, then there is no condition on the eigenfunction,
and consequently all values of i, are allowed. The
label p’ is continuous in this case, and may be taken
equal to pg,.

The eigenfunctions of / defined by Eq. (D10) could
be constructed in principle from a complete knowledge
of the equilibrium particle trajectories, and they are
evidently complete for functions defined in that part of
the phase space covered by the equilibrium particle
trajectories (in the sense that delta functions can form
a complete set).

It should be noted that these eigenfunctions are highly
pathological functions of the original variables ¢ and p
in the general case. The functions given by Eq. (D10)
are acceptable as functions of the variables y; and 7.
However, the variables y; are expressed in terms of
g and p by the functions 71;(g, p). There do not in general
exist 2n -1 proper constants of the motion 1,{¢, p) which
are “isolating” in the sense of Wintner, " When the un-
perturbed orbits are ergodic in some f~dimensional
region of phase space, then, throughout that region, at
least f of the constants #; (g, p) will be discontinuous at
every point! Nevertheless, the existence of the “eigen-
functions” (D10) is useful, both for purposes of the gen-
eral formalism, and as a basis for various approxima-
tions. If we expand the perturbation distribution func-
tions in terms of the eigenfunctions (D10), our formula-
tion will correspond to the method of integration over
unperturbed orbits, Moreover, the eigenfunctions (D10)
may be highly degenerate, since the eigenvalue 1, may
not depend on all of the constants @’ and ¢;. We may then
construct new eigenfunctions by superposition. It may
happen, as in the special case discussed below, that the
new eigenfunctions are not so pathological. Their use
in the expansion of the distribution functions does not
directly correspond to the method of integration over
unperturbed orbits. Such functions are often more use-
ful. They may even form the basis for a perturbation
calculation of approximate eigenfunctions in the patho-
logical case. Another practical method for approximat-
ing a finite subset of the eigenfunctions and eigenvalues
may be to convert the eigenvalue equation, Eq. (D1)
to a relatively small matrix eigenvalue equation by ex-
panding each of the eigenfunctions in terms of a rela-
tively small set of eigenfunctions of a similar problem
for which the eigenfunctions are known.

1. Case of at most one nonignorable coordinate

If all of the coordinates are ignorable, then /| is
simply

=7, s 2

FOp, gy
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and, because 34,/8p, is independent of the coordinates,
the eigenfunctions are proportional to

[ 8{py, — pt) explixeg,),

in which k, is chosen to satisfy any boundary conditions
associated with coordinate ¢,. This simple case re-
quires no further comment.

We now consider the case in which there is exactly
one nonignorable coordinate. Denote the nonignorable
coordinate by € and its conjugate momentum by P; and
denote the ignorable coordinates and their constant con-
jugate momenta by g, and p,. The set of coordinates ¢,
will be denoted by ¢ and the set of momenta p, will be
denoted by p. The Hamiltonian / (@, P, p) is a constant
of the motion, and the curves in the (@, P) phase plane
defined by

/"/S(Q; P,p):e,

where ¢ is a constant, are the equilibrium particle
trajectories in the phase space projected onto the (@, P
plane. They are labeled by € and p along with the value
of an integer variable a. The integer ¢ is used to dis- )
tinguish disjoint curves that correspond to identical
values of € and p, We specify the location of a point on
a trajectory by the time, 7, that it would take an equi-
librium particle to move to that point from a reference
point on the trajectory, the sense of the motion being
determined by the sign of 7. The Hamiltonian equations
for motion along a trajectory are

(D11)

de _ s
aQ _ D12)
ks AP |p.p(q,a, ¢, (

and
ar _
ar _ , D13
dT 3R |p.p@,ae,p ( !

where P=P(Q, a,¢, p) is obtained by solving Eq. (D11)
for P as a function of @, ¢, and p on the curve specified
by a. Equation (D12) can be integrated to give 7 as a

function of @, a, € and p,
s
T= [0 dQT/ <E . (D14)
j P | p.p(ar,a, 6p

We now change variables from (@, P, q,p) to
(t,a,¢,q,p). For each value of a, the Jacobian of the
transformation (@, P) — (7, €) is unity,

2@, P)
e 7 (D15)
as is easily verified by differentiating Eq. (D11} with

respect to € holding 7 fixed and then using the equations
of motion (D12) and (D13). The Liouville operator in
terms of the new variables is

] W 2
[,s:ﬁ + B 3 S 3 .
9Py Gy

2T
This expression for [/ differs from Eq. (D9) because
here the derivative with respect to 7 is to be performed
holding (¢, g, p) fixed, and the coordinates ¢, are not con-
stants of the motion. In this expression 34,/3p, is to be
calculated considering //, to be an explicit function of
®, P, and the momenta p,. Then 34,/9p, is to be ex-
pressed as a function of 7, a, ¢, and the momenta p,.

{D16)
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As noted in Sec, IV, when there are ignorable coordi-
nates, we may take advantage of the fact that Ls com-
mutes with 2/3¢,, as well as with the constants p, and
# s We may choose eigenfunctions of [ which are
simultaneously eigenfunctions of the operators 3/23q,,
pr, and //,. The eigenfunction is then a product of the
(acceptably behaved) eigenfunctions of each of these
operators times a function of the remaining variables.
When there is only one nonignorable coordinate, the
latter function is a function of 7 alone,

wsr(T: a’ E’ q, p)

= 0,q 6(e =€) [1,05(p, —P;:)(Nk)-“z explikygy) #,(7).

(D17)

The quantity «, is chosen to satisfy any boundary condi-
tion associated with coordinate ¢,. The label » stands
for the set of labels (a’, €', p’, k, 1'), where p’ stands
for the set of quantities p; and « stands for the set of
quantities x,. The quantity (N,)™"? is a normalizing
factor for exp(ik,q,). The nature of the label u’,
discussed below, is determined by whether or not the
motion in the (@, P) plane is periodic. By substituting
this form for w,, into the eigenvalue equation, Eq. (D1),
we obtain the following eigenvalue equation for u,, (7):

d

_”_az +i (kak e us,) 1., (1) =0. (D18)
The solution of the equation is

s, (1) =d, explilp,7- G, (D}, (D19)
where

Gs, f Z‘kxk (D20)

ap E
7y is any convenient lower limit for the integral, and

ds, is a constant chosen to normalize w,, according to
Eq. (D2).

The eigenvalues U, are determined from the boundary
conditions with respect to T appropriate to the particu-
lar phase-space trajectory. There are two cases, ac-
cording as the motion in the (@, P) plane is periodic
or not.

2. Periodic case

The motion in the (@, P) plane is periodic if the
trajectory in the (@, P) plane is closed {trapped parti-
cles). The motion will also be periodic if the trajectory
is open and if, in addition, the (@, P) phase plane itself
is periodic in @ (untrapped particles with a periodic
boundary condition with respect to @). Denote the
period of the motion in the (@, P) plane by T,,. Because
both € and P are periodic functions of 7 for fixed ¢, the
eigenfunction »,, must also be a periodic function of 7
in order that it can be expressed as a single-valued
function of @ and P. Let us denote the mean value of
the integrand in Eq. (D20) by

sr _aﬁi dT

(D21}

The function G, (7) may be separated into a periodic
part and a part linear in 7,
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Gor(T) = Gy (1) + B, T, (D22)
where the periodic part is given by

Gyl = [T (Z,K My _g )d'r’. (D23)

sr o kTR apk sr
The condition that u,(7) be periodic then requires
that u,, have one of the values
2’
Hop=Byt T, 1/=0,21,52,007, (D24)

sr

Note that, if 8, =0, u,, does not depend on the quantities
Kpe

3. Aperiodic case

If the trajectory in the (@, P) plane is open and ex-
tends to infinite values of @, without any periodic bound~
ary conditions with respect to @, then there is no addi-
tional condition which must be satisfied by u,,, and
hence no restriction on the values of . All real val-
ues of Uy, =’ are permitted.

APPENDIX E: PROPERTIES OF ANALYTIC
MATRIX FUNCTIONS

We wish to study some of the properties of an analytic
matrix function A(w)—that is, a matrix whose elements
are analytic functions of a variable w in some region
(or regions) of the complex w plane. We begin with some
definitions.

Given an analytic function f(w), we define the con-
jugate function f*{w) as follows,

@) =[Flw*)]*.

The conjugate function f*(w) is an analytic function of w;
it may be obtained by analytically continuing [f(w)]* off
the real axis if f(w) is analytic on the real axis, Loose-
ly speaking, f*(w) is obtained by conjugating f(w), treat-
ing w as a real variable. We define a real function f(w)
as a function with the property

Flw)=r*(w).

A real function takes on conjugate values at conjugate
points w and w*. It is the analytic continuation of a
function which is real for real w, if the function is
analytic on the real axis.

(E1)

(E2)

Given an analytic matrix function A(w), we define the
adjoint matvix function as the matrix

A w) =[A(w™)]". (E3)

If A(w) is analytic on the real axis, then A'(w) is the
adjoint matrix to A(w) on the real axis. In that case, it
is obtained off the real axis by analytic continuation,
Note that this is the only way to define an adjoint matrix
which is an analytic function of w; [A(w)]" is not an
analytic function of w. The matrix elements A,T,(w) of
the adjoint matrix are

Al (w) =A% (w).

We can now define a Hermitian matrix function as a
matrix D(w) with the property

DHw) = D(w).

(E4)

(E5)
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Note that the dispersion matrix D{w) defined by

Eq. (IV.24) is not generally analytic on the real axis,
but has a cut there if the sum over # includes an inte-
gral over a continuous variable (for example, E), and
if pg, is a function of that variable. The cut extends
over the region of the real axis covered by values of
Le. In any event, the definitions (E3) and (E5) still
apply. [If we analytically continue D(w) across the real
axis from above according to Landau’s prescription,
as discussed in Sec. V, then of course D(w) is analytic
on the real axis, but the definition (IV.24) is effective-
ly altered by deforming the path of integration, and
D(w) is no longer Hermitian. | We define a unitary ma-
trix function as a matrix U(w) with the property

U-Hw) =UN(w), (E6)

where U™} (w) is the inverse matrix.
The following theorems can now easily be proved:

Theorem 1: The eigenvalues of a Hermitian matrix
function are real functions.

Theovem 2: A Hermitian matrix function can be
diagonalized by a unitary matrix function, except possi-
bly at certain values of the variable w where two
or more eigenvalues become degenerate.

Theorem 3: If a Hermitian matrix function D(w) is
analytic on the real axis, then on the real axis itis a
Hermitian matrix in the usual sense; its eigenvectors
form a complete orthonormal set. If D(w) is any
Hermitian matrix function, then, for complex w, the
eigenvectors of D(w*) form a dual set to those of D(w).

The proofs are straightforward. For example, to
prove Theorem 2, we note that the matrix D(w) can cer-
tainly be diagonalized by a similarity transformation,
except possibly at certain values of w where two or
more eigenvalues become degenerate. [When w is not
real, D(w) is not a Hermitian mafrix, and therefore at a
point w where D(w) has a degenerate eigenvalue, D(w)
may not be diagonalizable, though it will have a Jordan
normal form. | We may therefore write, for almost all
values of w,

U (w) D(w) Ulw) =d(w), (ET)

for some matrix U{w), where d(w) is a diagonal matrix.
If D(w) is a Hermitian matrix function, then using the
above definitions and Theorem 1, we may write the ad-
joint of Eq. (E7) in the form

Ut (w) D(w) U1 (w) = d(w). (E8)

Comparing Eqs. (E7) and (E8), if none of the eigen-
values are degenerate, we see that U{w) satisfies
Eq. (ES6).

Let the matrix D(w) be of dimensions NXN, Then
the matrix D(w) has N eigenvalues d;(w). When there is
a double degeneracy, the condition

d; (w) =d;(w),

for two particular values { and j, represents two condi-
tions on w [real and imaginary parts of d,(w) and dy(w)
must coincide], and there will be in general only certain
discrete values of w at which the two eigenvalues d;(w)
and 4, (w) coincide. Only in exceptional cases will three
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or more eigenvalues coincide at a single value of w.
Hence, typically the eigenvalues dj {w) will form an
N-valued function d{w) on a Riemann surface whose N
sheets are stitched together in pairs at discrete branch
points. We shall see below that the unitary matrix func-
tion U(w) which diagonalizes D(w) is quadruple-valued
at such a branch point; that is, w must circle the branch
point four times before each element of U(w) returns

to its original value. At a complex value of w where
two or more eigenvalues become degenerate, the cor-
responding eigenvectors in general also become degen-
erate (i.e., linearly dependent), and the matrix U(w)
becomes singular.

We now investigate the behavior of the eigenvalues
and eigenvectors in the neighborhood of a double branch
point wy of d{w). In a region of the w plane around w,
which excludes any other branch points, we can find a
unitary matrix function U{w) which diagonalizes D(w)
except for the two rows and columns associated with the
degenerate eigenvalue d(w;). Let D{w) be thus partially
diagonalized, and consider for the remainder of the
present discussion only the 2X2 matrix

D(w):< 2a g+ih) ,

g—ih 2b (E9)

where a, b, g, and I are real functions of w in the
sense of definition (E2), The eigenvalues of this matrix
are

dwy=a+b+QY?, (E10)
where @(w) is the function
Q=(a-bl+g+nk (E11)

Note that @{(w) is a real function and is real and non-
negative at any point w where a, b, g, and # are real
(for example, on the real axis). Hence d(w) as given
by Eq. (E10) is a real function, At the branch point,
@(wy) =0. Evidently w, cannot be real unless a=»5 and
g=h=0. If w is made to circle the branch point w,
the two values (E10) of d{w) are interchanged. Suitably
normalized eigenvectors are readily found. They are

the columns of the matrix
g+il g+ ih

QU775 Fal’?
[V +p—a]/? -[QY2—b+a]V?
(E12)
The terms in Eq. (E12) are written so that all expres-
sions are real functions except for the factors ¢ written
explicitly. (Note that @'/*> Ip-al if a, b, ¢, and i are
real.) The reciprocal matrix U'(w) is obtained by inter-
changing rows and columns in Eq. (E12), and replacing

the explicit factors i with —i. It can be readily verified
that

d, 0
Utpu = (" )
U (O d-

A careful examination of the behavior of the terms in
Eq. (E12), on the four-sheeted Riemann surface asso-
ciated with the functions @'/2, @4, and [@'/*+ (b - a)]'/?,
in the neighborhood of the branch point wy where @(wp)
=0, will show that each circling of the branch point in-
terchanges the two eigenvectors and reverses the sign

LT((‘U) :2-1/2Q-1/4

(E13)
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of one of them. Consequently the unitary matrix func-
tion U(w) is quadruple-valued around the branch point,
as noted in the preceding paragraph. We note also that
the eigenvectors become degenerate and the elements
of U{w) become infinite as w — w; and @ —0, except for
w, on the real axis, in which case a{wy) =b(w,).

We will not in this paper analyze the behavior of the
eigenvalues and eigenvectors of D{w) in the exceptional
cases when more than two eigenvalues become degen-
erate, or when a degeneracy occurs at a root of the
dispersion relation (IV. 28).
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PIn that case, I, H,, and their derivatives with respect to o
are to be evaluated at o (r, 8) = @M (r). In order to make our
notation less cumbersome, when derivatives ot Ly and H
with respect to ¢ are to be evaluated at ¢ we denote this
by simply writing the derivatives as if they were with
respect to ¢, For example, 8H,/d¢ Oy and 841,/ 8 (O
mean, respectively, 9H/9 ¢ and 9 H/ 00" evaluated at
e, =0 O(r).

% he reason is that Tlamilton's equations for the particle
motion do not involve a time derivative of the array of
potentials, whereas the Lagrange cquations may, and usually
do, involve such a derivative. This is related to the fact that
the transformation between (r, p) and (v, v) depends on the
array of exact, time-dependent potentials. It is important
to choose either the (r, p) or the (r, v) variables before
linearizing the cquations.
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An upper bound on the number of algebraically independent invariants in an enveloping algebra U under
the action of a Lie algebra G, of derivations is obtained. We are able to determine the exact number of
invariants for the case [G,, Gol = G,. This generalizes previous results about Casimir invariants.

1. INTRODUCTION

In a previous paper! we investigated the Casimir
invariants of any finite-dimensional complex Lie alge-
bra G, This work gives an upper bound to the maximal
number of algebraically independent Casimir invariants.
In particular for the case {G, G]= G the bound became
a strict equality. Besides for their intrinsic mathema-
tical content, results of this kind play, as well known,
a erucial role in the applications of Lie group theory in
physics. ?

Sometimes, one has to deal with Lie group action
over noncommutative algebras which are not covered
by the above scheme, Such is the case whenever sym-
metry breaking appears. For instance under the pf‘es-
ence of interaction the symmetry group G of a free
Hamiltonian H, reduces to some subgroup G, of G,
Hence the final Hamiltonian H tust be invariant only
under the action of G.

Situations like the one mentioned above naturally lead
to the analysis of the invariants in the enveloping alge-
bra {/ of a Lie algebra G, with respect to a family of
derivations, In this paper we generalize the results of
Ref. 1, The tools involved in the present analysis are
the elementary aspects of the theory of enveloping
algebras. ® Section 2 is devoted to state some prelimi-
nary facts concerning the notion of algebraic indepen-
dence in enveloping algebras. In Sec, 3 we find an
explicit upper bound of the maximal number of alge-
braically independent invariants in an enveloping alge-
bra, under the action of a Lie algebra G, of derivations,
In the case [G,, G,|= G, the bound becomes an strict
equality. These results are applied to the adjoint
action, As an illustrative example, we compute the
admissible interaction terms for a Hamiltonian in non-
relativistic quantum mechaniecs, Finally we show that
the general bound derived in this paper is better than
another one which is implieit in the work of Joseph, ¢

2. ALGEBRAIC INDEPENDENCE IN ¢

Let G denote any complex Lie algebra of dimension
IGl=n, with basis {4,}7. Let ¢ be the universal envel-
oping algebra of G, consisting of all (noncommutative,
in general) polynomials in Ay,...,A4,. The linear sub-
space of {/ generated by the monomials Af1A$2,,, A%
of degree oy + ay+ ++++ a,<m will be denoted by (/..
Given uc: ¢/, we will refer to the integer d(u)
=inf{mwe /,} as the degree of u.
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On the other hand, we will have to consider the sym-
metric algebra S of &G, which is isomorphic to the poly-
nomial algebra C[ay,...,a,] in n commutative variables
over the complex field C. More precisely, if we take
st =,/ . for m=1 (by definition $¥=C), the sym-
metric algebra is nothing but S=®; S™, The canonical
projection j,:ucl/, ~jfu)=u+U .15 allows us to
define the so-called principal part of uc /as [ul
=400 @), In this context, the isomorphism mentioned
above between S and €C(ay,...,4,] can be realized by the
identification a, =[4,].

There is an interesting mapping which links S and U,
namely the canonical isomorphism defined as the unique
linear isomorphism ¢: S~/ verifying

=L DA A (1)

dla 71ocn,eah’ dg(r)?

PIIRY 4
@y a,
where II, stands for the permutation group of 7 objects,
Given any integer m = 0, we will denote it as {/ ™= ¢ (S™),

In order to study invariants we need to define some
notion of algebraic independence in Sand{. In S it is an
easy task, because we have at hand the usual notion of
algebraically independent sets in commutative algebras,
which will be referred to here as S independence,

It seems natural to translate this notion to {/ in such
a way that it turus out to be compatible with ¢, in some
sense,

Definition: {u,}jc U/ is said to be // independent if for
all nonzero ordered polynomials P(xy,..,,x,)
:ZIAW,...,arxﬁi et xfr we have that P(“a(l): vevy ”u(r)) #0
in¢/, for all oell,, Sometimes, we will refer to the
elements uy,...,u, as / independent,

Lenoma 1: Let {u;}{c (/. Then
{[#,1}7 S independent === {«,}] {/ independent.

Proof: Suppose that {#,}] is not / independent, so that
(by previous reordering of the #, if necessary) we can
find P such that Py, ... ,%,)=Fha,..., o i1 " 27=0
with x, ..., o, * 0 for all (agy.0., a,S(—:I_ By applying ¢
we get

04 T N 1700

where I, ={(ay,..., )€l ¥ja,d (¢,) = maximum} and
Almax) =3y 03d 1),

However, we know d){E,max)\%”_’ o [t]%1 0 < [ar, ] %}

< (2 Umax)

© 1978 American Institute of Physics 437



Since ¢/ ™ Y,.;={0}, we conclude that this element is
zero, But ¢ being a linear bijection, this would mean
that {{#,]}] is not S independent. (Q.E.D.)

The next corollary checks the required compatibility,

Covollary 1: Let py, ..
of S, Then

., b, be homogeneous elements

{p,}; S independent = {¢@ )}, ¢ independent,

Proof: 1t follows from the fact that [¢ (p)]=p, for any
homogeneous pcS, Q.E.D.)

At this point, we want to relate our definition to the
explicit notion of dimension proposed by Gel’fand and
Kirillov, ® Given a subalgebra V of {/ and a finite set
7={;}{cV, let us denote by d(7, V) the linear dimen-
sion of the linear subspace of V generated by the
monomials of degree less than or equal to N over the
variables {»,}{ taken in any order, Gel’fand and
Kirillov define

- —sup TTm Mﬁ N)
Dim V= 3 New ].Og—l\-%—.
(In what follows the symbol dim will denote linear
dimensions, ) In spite of the apparent complexity of this
definition it turns out that if V is commutative, Dim V
coincides with the transcedence degree of V over the
field C.

Tn the general case of a subalgebra VC //, let grV
denote the graded algebra of V. This algebra is defined
to be the (commutative) polynomial subalgebra of S
generated by the set {{u]:ucV}. Also, let Dim gr V be
the maximal number of S-independent elements of gr V,
Joseph? has proved the following result,

Theovem 1: Dim V= Dim gr V,

The compatibility of our Definition 1 with the
Gel’ fand—Kirillov dimension derives from the following
Proposition.

Proposition 1: Dim V equals the maximal number of
{/-independent elements of V,

Proof: Let us take a maximal S-independent set {»,}]
of homogeneous elements in gr ¥V, We can choose
{u,}icV such that p,=[r,;]. From Lemma 1 it follows
that {«;}] is ¢/ independent in V. Since Theorem 1 tells
us that Dim V=7, we conclude that Dim V is less than
or equal o the maximal number of & -independent ele-
ments of V, It remains to prove that strict inequality
yields a contraction.

In fact, let us suppose the existence of a {/-indepen-
dent set 7 ={v,}F-V with R > Dim V., In that case the
ordered monomials VA1V ... V2R would be linearly
independent. Therefore,

i logd@, N) _1um log(*z®) _ o
¥=""TogN ¥ logN N
This would imply Dim V= R which is absurd,

3. INVARIANTS UNDER THE ACTION OF
DERIVATIONS

(Q“ ED D° )

A. Derivations on enveloping algebras

Definition 2: By a derivation on G we shall mean a
linear map 2:6 — G verifying the property
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a([As A’]) = [a(A),A’] + [A’ a(A,)],

We may extend the derivation 3 to a linear map on the
enveloping algebra & of G in such a way that it verifies

Hi,u26é/. (4)

One easily finds that 2({/™)c{/™ for all integers i =90,
[By definition we take 3(1)=0], We associate with the
map 9: {/ — {/ another linear map

8:5—58, d(p)=o o (p(p)]. (5)

It follows at once that 3(S™)<S™ for all integers m = 0
and we have

a(py=[a(p(p)),

Moreover we obtain

5(/’11’2)25(171)172"'1715(1’2), Pi,PeS (7)
Definition 3: The elements of the sets
(1 O=lucli: e(u) =0} (8)
'@z [pe §:3(p) =0} 9)
will be called the invariants in {/ and S, respectively
under the derivation 9. From (4) and (7), we see that

U@ and S are subalgebras of ¢ and S, respectively.
On the other hand, (5) implies

d)(sus)): e (10)
Lemma 2: ST® = gr(/1®,

Proof: Since 3(S")cS™, each element pgS"s) may be
written as a sum p =3p,, where p,&S'®NS™, On the
other hand one obtains from (10) that u, = ¢(p,)e ¢/
A{™ and therefore p,,=[u,]. Then we deduce
SIG ¢ gpf®),

AA'eG 3)

0 (uiuz) =0 (ui)u2 + uia (uz),

= heS™, (6)

Since 3(U™)c( ™, each element «c (/' is of the form
w="S3u,, where i, (I If we suppose 1,#0, we
have [u]=[w,], then () implies

(0D = &) = (2 ()1 =0,
that is, [#]cST®, Therefore, gri/’@cs!®,  (Q.E.D.)

Covollary 2: Dim J/ '? =Dim §T®,

Proof. 1t follows at once from Theorem 1 and
Lemma 2,

B. Invariants under the action of Lie algebras of
derivations

Let G, be a complex Lie algebra of dimension G|
=ny and let X — 3, be a representation of G, by deriva-
tions over G, Let us consider the extension of their
derivations to the enveloping algebra // and to the sym-
metric algebra S of G, We define the following sets of
invariants under the action of G:

(1@ =lye /i3 @)=0,

31(5(60)) = {/)E‘S:ﬁx(p) — 0,

XcG,l, (11)
Xe Gyl (12}

From the above results it is straightforward to verify
that
d)(sf<3<co))):ur(a<co>)

and that
T3 Go» — or (/146G
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Moreover Corollary 2 generalizes to
Dim/ 6" = Dim S Go¥ (13)

This number will be denoted by 7(G, 3(G,)).

Let {X,,i=1,...,n,} be a basis of G, with commuta-
tion rules
[XI)X]]sz‘:IXh- (14)
Let us denote 3,=0y,(i= ,7y). They act on the
basis {4} of G in the followmg form,
9;(A )*‘y‘y‘i’a vs (15)
where ywut‘(zfl ey, v=1,.,.,n),
From (7) we obtain at once
d
) =Datu g, PES. (t6)

Let »(G, a( Go)) be the maximal rank of the nyX#n matrix
function defined by M, (@) =3,+}.2,. We have

Theorem 2: 7(G, 2(Gy)) <| G|~ 7(G, 3(Gy)) (17

Proof: From (16) we have that S7®6? coincides with
the set of polynomial solutions of the following system
of differential equations,

f

ia 08(1

Since [8,, a,]:zkd”ak, these differential operators de-
fine an integrable distribution of vector fields in C”,
From a classical result due to Frobenius the number of

functionally independent solutions is n - 7(G, 3(G,)).
Q.E.D.)

Generally speaking equality will not be accessible in
(17), because of the existence of nonpolynomial solu-
tions of the systems (18). Nevertheless, there is an im-
portant exception.

Theorem 3: If [Gy, G]1=G,, then 7{G, 3(G,)) =G|
- V(G; a(GO))u

8 (f)—h 1s)

=0, i=1,...,%.

Proof: Since the property [G,, G,]1 =G, forces G, to be
an algebraic Lie algebra,® a result of Dixmier’ implies
the existence of n — (G, 8(G,)) algebraically independent
rational solutions of the system (18), On the other hand,
given a rational solution i =p,/p,, if we take p; and p,
relatively prime polynomials we easily obtain

v =x) _Zx(Pd i xeg
by P2
Then A= A(X) is a weight of G,. But [G, G,|=C, im-
plies A=0, Therefore, p;, P86 and we deduce
that S840 has n - (G, 3(G,)) algebraically indepen-
dent elements, (R.E.D.)

Rewarlz: In practice one may find a maximal set of
homogeneous algebraically independent elements
{pir=1,...,N=<7(G, 3(Gy))} in $7?C" py solving sys-
tem (18), An analogous set may be achieved in (/¢ 0)
by taking u,=¢(p,) as Corollary 1 shows,

C. Applications
Let G, be a Lie subalgebra of G; under the adjoint
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action (X, A)eG,xG —[X, AleG, G, acts over G as a Lie
algebra of derivations, The set of invariants in J/ under
the action of G, is given by

U ={ue :[X,u]=0, ¥ XeGyl.

It {A,;a=1,,..,n}is a basis of G such that their #,
first terms {4;:i=1,...,n,} form a basis of G, the
above results imply that the dimension (G, G,) of (/7%
verifies

7(G, Gy) <| G| - 7(G, Gy),
where 7(G, G,) is the maximal rank of the 7, X» matrix

function M, (@) =3,Cl e, ((=1,...,ny a,v=1,..,,n,
From Theorem 3, equality in (20) holds if [G,, G,]=G,.

19)

(20)

In the case Gy= G the set/ 7°® reduces to the set of
Casimir invariants! of G and we arrive at well-known
results! about the number of algebraically independent
Casimir invariants,

Let us look at an example to illustrate the way in
which these questions may be relevant to physics.

Example: Let us consider a system of two particles
in nonrelativistic quantum mechanics, Let {Q%, P,
8™} be the position, momentum, and spin observables
for the particle ¢ ({=1,2). Together with the identity
operator I, these observables generate a Lie algebra
G of dimension #=19, The action, of the groups of
translations, rotations, and Galilei transformations
are generated respectively by the operators

_ 2 pu _ 20 aWwm ) ¢ _ 2
P= =1,p) J*m,zQ xP+S )’ G“m,z

mng,

where m; ({=1,2) are the masses of the particles, The
Hamiltonian of the system will be of the form

H= _?JZH@)*P‘“Z +V,
t=1,

where V represents the interaction term and depends
upon the generators of the Lie algebra G, Galilean
invariance requires V to satisfy the commutation
relations

[P, V]=[J, V]=[G, V]=0.

Thus, the admissible solutions in the enveloping
algebra // of G will be the invariant elements in // under
the adjoint action of the subalgebra G, of G generated by
{G,P,J,/}. An easy computation yields (G, G,) =9.
Since [Gy, Gyl =G,, we deduce 7(G, Gy) =10, A maximal
algebraically independent set is fiven by

1. §»? S(2>2, q? pz 12
b ’ b ’ ’
ls(i), ls(Z), ps(I)’ ps(Z)’

where q,p, and Il are the relative position, momentum,
and angular momentum observables defined by

q=Q" -Q®, p=

Final Remark: From a result of Joseph! we may de-
duce the following upper bound for 7(G, G,),

(G, Gy) <2| G| - | G, | - (6),

(myPY — i PDY/ i + my, 1=qxp,

@1

where »(G) is the maximal rank of the » X7 matrix
function M (a) =7}, cha, (o, 8,v=1,,..,n). An elementa-
ry application of Rouche’s theorem yields 7(G) - 7 (G, Gy)
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<|G|-1Gyl., Then we obtain in Computers in Nonassociative Rings and Algebras
(Academic, New York, 1977).
|G|-7(G, Gy) <2 I Gl-| G, |- 7(G). 3J. Dixmier, Algebres enveloppantes (Gauthier—Villars,
Paris, 1974).
Therefore, the bound (20) is stronger than (21). 4A. Joseph, Bull. Soc. Math. France 102, 75 (1974); ““Sur les
algebres de Weyl,” Cours Université de Paris VI (1974).
1. M. Gel'fand and A.A. Kirillov, IHES Publ, Math. 31, 5
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1580 (1975). 8C. Chevalley, Théorie des groupes de Lie. II (Hermann,
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Constrained Hamiltonian formulation for interacting fields:

Stable particlelike solutions?

Gerald Rosen, Cleg Jakubowicz, and Vahe Tatoian

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104

(Received 16 May 1978)

It is observed that singularity-free localized particlelike solutions to certain essentially nonlinear classical
field equations are dynamically stable in a constrained free-field Hamiltonian formulation. Being rather
novel, the variational principle for such a theory pertains to an arbitrary pair of neighboring solutions to
the field equations, with 8¢ specified as the difference between neighboring solutions.

PACS numbers: 03.50.Kk

1. INTRODUCTION

Inasmuch as a prefactor coupling constant ordinarily
undergoes renormalization with quantization of the
theory, it is permissible to view “bare” coupling con-
stants as undetermined Lagrange multipliers in the con-
text of prequantized classical theory. Interaction be-
tween fields, or nonlinear self-interaction of a field,
arises from a linear-theoretic free-field Hamiltonian
if the fields and their conjugate momentum densities are
constrained by a subsidiary variational condition. What
is particularly interesting about this alternative way of
formulating interacting classical field theory is that it
can engender stability for singularity-free localized
solutions!=! —solutions that would otherwise be dynami-
cally unstable with respect to evolution generated by
the conventional interacting-field Hamiltonian without
subsidiary constraints.

2. GENERAL FORMULATION

To put it precisely, let Hy=Hyl¢, 7] denote a
generic free-field Hamiltonian in the canonically con-
jugate variables ¢ =(¢,(x,1),..., ¢,{,¢) and
7=(m(x,1},...,7,(x,8)); H, is homogeneously quadratic
or bilinear in the latter canonical variables, Sup-
pose that (¢,7) and (¢+ 0, 7+ 67) are both physically
admissible neighboring solutions to the nonlinear
{(interacting) classical field theory if and only if

¢ an
8Hy = e br - 80 d°
H _[<ar T Y (b)(ix
R

3
subject to 6C =0, (1)

where C=C[¢,7] is a prescribed functional that trans-
forms like energy under Lorentz transformations.
From (1) it follows that any admissible solution
satisfies the field equations

39 _O%H, ,0C am_ bHy , OC (2)

ar— om " dm’ ot B¢ b

with X a Lagrange multiplier, while the difference be-
tween a generic pair of neighboring solutions satisfies
the linear homogeneous constraint equation

5C | o8C 3, _
/R;(@; 6¢+677 57r>dx-0. 3)

In (1)—(3) all functional derivatives are taken in the

?Work supported in part by NASA grant NSG 7491,
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three-dimensional sense [e.g., 6/6¢=56/0¢(x)] and a
dot is used to denote n-tuple contraction; otherwise the
notation is standard.!' The invariance of (1) under time
translations (with no explicit time dependence in either
H,or C) implies that the Lagrange multiplier A is a
constant independent of ¢, Clearly, Eqs. (2) are identi-
cal to conventional Hamiltonian field equations with
H=H,-C. However, the constraint equation (3) on the
difference between neighboring solutions (¢,7) and

(¢ + 8¢, 7+ d7) provides a mild restriction on the
manifold of admissible solutions to (2), a single
global'? condition at any instant of time on the 2n
space—time functions (6¢,o7).

3. CONSTRAINED ¢* MODEL

As a means of illustrating the effect of (3) on the
manifold of solutions to (2), consider the model' with
n=1,

Hy=4 [, a2+ |V [, €= 1] otd's. @

Rg

Putting (4) into (2) and (3), we obtain

3]

8% v .
T a =V e, )

~

qu ¢85 d*x = 0. (6)

The static spherically-symmetric singularity -free
particlelike solution to (5) is ¢ = ¢ = Z(32 + 3 AZ%)"V2 for
A >0, in which »= x| and the “size parameter” Z is
a free (positive or negative) real constant of integra-
tion. For solutions in the neighborhood of the latter
particlelike solution, (5) and (6) yield

2

32 _
(Mz-\ﬂ-sm*) 660, ™

J‘%gamd?x: 0. (8)

In terms of complex-valued radial functions &,

=£,, »(r) and the complex spherical harmonics Y7, the
general solution to (7) is expressible as

) i
— 1 Sy ikt
bp=r"Re 2 4 Zi&umYTe > (9)

For [~ 0, only real eigenvalues % are admitted by (7),!
and the constraint condition (8) is satisfied automati-
cally as a consequence of the angular integration,

For [ =0 with £,,=&,, (7) and (8) yield
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2 o
(k2 +dd7 + 5@4) 2=0, j'o Do eyrdr =0 (10)
as conditions on admissible radial functions in (9).
Subject to the boundary condition £,(0)=0 implied by

(9) at =0, the eigenvalue equation in (10) admits a
“cround state” with 2= +i(1.9)Z2 g-'/2 and a continuum
of “free states” for all real values of k.! Being node-
less, the “ground state” is precluded by the subsidary
constraint condition in (10), and because the associated
perturbation terms are thereby exluded from (9), the
constraint formulation engenders dynamical stability
for the particlelike solution. Elementary analysis also
shows that the subsidiary condition in (10) restrict

1=0 “free states” to the single eigenmode corre-
sponding to the value 2 =0,

Loy ot =00 - 2+ 5z
4. TRIAD-SCALAR ¢° EXTENSION

Let us now consider the triad-scalar n =3 extension
of (4) with

N _g . L 3
HOEEFL{ JRB(Hg"*' ‘Vd)f{z)dsx, CEEJRS(E qb?)dsx,(ll)

1

for which (2) and (3) produce

92,  om;,

aj;l :%:vmﬁx(ﬂi)‘b?)%, 12)
perz:{) J(pf (l)f ¢’35¢>3d"x:09 (13)
142,3

The static spherically-symmetric singularity-free
particlelike solution to (12) is ¢, =¢,=¢,=¢

= Z(® +42291/2 for 1> 0, as in the case of (5). For
the solutions in the neighborhood of the latter particle-
like solution, (12) and (13) require
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( - ”«54) Spi=2208" 22 8¢, (14)

212 i)

and (8) with 6¢= ¢, + 6¢, +6¢,. In terms of the latter
normal coordinate and 6¢'=6¢, —~8¢,, 09" =0¢, -3¢,
Eq. (14) resolves to (7) and

2
(aa? — V24 )(gﬁ,',):o. (15)
Since the effective potential in (15) is repulsive, only
“free state” oscillatory modes appear in the general
solutions for 6¢’ and 6¢”, and hence the constraint
formulation engenders dynamical stability for the
particlelike solution.
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Linearization stability of gravitational and gauge fields
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Conditions are given for the linearization stability of the Yang-Mills and the Einstein-Yang-Mills
equations on a spacetime with a compact Cauchy surface. There are sufficient conditions on the Cauchy
surface, and necessary and sufficient conditions on the spacetime; the latter are identified with global
infinitesimal symmetries of the principal fiber bundle associated with the Yang-Mills (gauge) field. For
each system a splitting theorem for the initial data is given and the Cauchy problem is discussed.

I. INTRODUCTION

This paper extends the linearization stability results
of Fischer and Marsden! and Moncrief? (on vacuum
spacetimes) and Arms® (on the coupled Einstein—Max-
well system) to the case of gravity coupled with a
sourceless gauge field, For a spacetime with a compact
Cauchy surface and a gauge field with matrix gauge
group whose Lie algebra has a metric invariant under
the adjoint action of the group, we obtain conditions for
linearization stability of the coupled Einstein—Yang—
Mills field equations., These conditions are sufficient
conditions on the Cauchy surface and necessary and
sufficient conditions on the spacetime. Roughly speaking,
the results state that linearization stability can be
guaranteed when the fields are not “too symmetrical, ”
Thus a generic solution, which lacks symmetry, is
linearization stable,

As a step in proving these results, we must show that
the Cauchy problem for the Einstein—Yang— Mills sys-
tem is well posed. In addition, Cauchy problem and
linearization stability results are stated for Yang— Mills
fields alone, The latter, which like the results for the
coupled case state that linearization stability is cor-
related to lack of symmetry, are very similar to results
of Moncrief! on Yang—Mills—Higgs fields,

Linearization stability concerns the validity of linear
perturbation theory, A solution to the exact equations
is said to be linearization stable if any solution to the
linearized equations (relative to the exact solution)
approximates to first order a curve of exact solutions,
This property is not trivial, as is demonstrated by the
example of Brill and Deser, *

We shall model a Yang—Mills (gauge) field as a 2
form F with values in the Lie algebra g of a Lie group
G and satisfying certain field equations, F comes from
a Lie-algebra-valued 1 form A called the vector
potential,

F=dA+][A, Al. (1.1a)
(In coordinates,
F.=4; .- AL+ C5 AL AL, 1.1b)

where [ , ]is the Lie bracket and C}, are the structure

constants of g.) [Note: In most of the physics literature,
F and A take values in ig, This factor of ¢ and factors of
~1 and 2 coming from variations in several conventions
lead to variations in (1.1) and subsequent equations, We
detail our conventions in see, IL | The Yang— Mills field
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equations are

divF+[A, F]=0. (1.2a)
(In coordinates,
Fi,+ C‘gcAﬁF;"’:O, (1. 2b)

where the semicolon indicates the covariant derivative, )
(1,1) and (1, 2) may be derived from the action
JF8,E*d(*vol,) by varying with respect to the potential
A, (See, e.g., Ref, 6.)

The field and its potential may be multiple-valued
globally, We may think of the field as a collection of
locally defined single-valued fields. Two locally defined
fields are part of the same global field if on the inter-
section U of their domains there is a gauge transforma-
tion S: U — G, such that

A=ad(S)A+S*6, F=ad(S!)F, 1.3)

where $*6 indicates the pullback to U of the canonical
g-valued 1 form 6 on G (Ref, 7, p. 41). [For G a matrix
group, (1,3) becomes

A=S14S+51ds, F=51Fs, ]

The most natural geometric interpretation of the gauge
field is as the curvature 2 of a econnection w on a
principal fiber bundle P over spacetime with group G,
(Cf. Ref. 8 and references therein.) Q and w are a 2
form and a 1 form, respectively, with values in g and
defined on all of P; we require that

dive + [w, 2] =0.

Given a local section i: U—~P, U a neighborhood in
spacetime, we can define A=i*w and F=i*Qon U; 4
and F will fit all the requirements of a Yang— Mills
field.

The coupled Einstein—Yang—Mills system consists of
the Yang—Mills field equations (1.1) and (1,2) and the
Einstein field equations with a Yang— Mills source, The
energy-momentum tensor for a gauge field is the ob-
vious generalization of the energy—momentum of
electromagnetism,

TlLV = F:lFaxV - %gqu)aaFa)my (1- 4)

where g is the spacetime metric, (Cf, Ref, 9, p. 68;
the energy—momentum tensor above differs from that
of Ref, 9 in that following Ref, 10 we use units such
that ¢ =167 (gravitational constant} =1 and electric
charge is in rationalized units, All our conventions are
detailed in sec, II,) The Einstein—Yang— Mills field
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equations come from the action
St =] (R~ §F3,F) (- detg)! /2%, (1. 5)

where R is the scalar curvature of g, by varying with
respect to g and A,

. STATEMENT OF THE MAIN RESULTS

Before giving a precise statement of the results, we
give some definitions and assumptions used throughout
the rest of this paper. Notation and definitions concern-
ing general relativity for the most part will follow
Ref, 11, especially Chap. 21, except for units and
universal constants which, as noted above, follow
Ref, 10; some global definitions missing from these
sources are drawn from Ref. 9 or 12, Our definitions
for principal fiber bundles and related structures fol-
low Ref. 7, except that we use the Bourbaki wedge pro-
duct convention (¥ ~v=ugv - v&u) as in Ref, 11, thus
eliminating factors of 3 that appear in many of the
formulas in Ref, 7.

Let (S, %) be a spacetime with a compact spacelike
Cauchy surface M, That is, *S is a four-dimensional,
C®, paracompact, connected, oriented, time-oriented
Lorentz manifold with metric 4g (signature — + -+ +) and
a compact C” hypersurface M such that g =% restricted
to M is positive definite and every inextendible timelike
curve in 1S intersects M exactly once, Roughly speaking,
the last condition means that appropriate data on M
and the field equations will determine all the
fields everywhere on S, (See sec. II,) In general,
tensors on *S have a preceding superscript 4, while
tensors on M do not, We work in coordinates (x=1/,x?,
x%, %% such that {f=0}c A, Lower case Greek indices
range from 0 to 3, inclusive, and are raised and
lowered by “¢: lower case Latin indices from the middle
of the alphabet (7,j, etc.) range from 1 to 3 and are
manipulated by g, A semicolon represents covariant
differentiation with respect to 4g, a vertical bar, with
respect to g, The volume element (- det ‘¢)!/? d¥x is
written *u; (detg)!/? @3 is written ., The second
fundamental form of M is k;; =— Z,,;, where Z is the
future pointing unit normal to 17, The canonical
momentum for ¢ (see sec, IID) is 7/ = (" ¢/ - ¥y 1, a
tensor density.

Let G be a Lie group which is representable as a
matrix group and has a Lie algebra g with positive de-
finite real inner product y which is invariant under the
adjoint action of G on g . Such a metric exists when,
for example, G is the direct product of an abelian group
and a compact semisimple group; the metric can be
taken to be minus the Killing form on the semisimple
factor, 1* All component work with respect to g is
written in terms of a left-invariant frame rather than a
coordinate frame, Let n= dimension of G and m=n+4,
Lower case Latin indices from the beginning of the
alphabet range from 1 to n and are raised and lowered
by y. If {X,} is a basis for g, that is, a basis for the
left-invariant vector fields, [X,,X,]=C$,X, defines the
structure constants Cg, of g ,

Let P be a principal fiber bundle over S with group
G (acting on the 7vight—see Ref, 7, Chap. I, Sec, 5)
and connection one form w, Thus the dimension of P
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as a manifold is m, Let @ = P restricted to M, Given

a loeal section i; Uc*Sc. P, 7oi= identity where

71 P—1S is the projection map, let *A=i*w and
‘F=i*Q, where © is the curvature of w, (See Ref. 7,
Chap. II.) Then A =restriction of ‘A to V=i* (w
restricted to @), For F=restriction of ‘F to M, it is
useful to define 3=* F, where x is the Hodge star
operator, or, in indices, 8= zv,,[iiklF%, where [ijk] is
the completely antisymmetric tensor density with
(123]=1, X G is the circle, so that the Yang— Mills
field 4F is an electromagnetic field, then B is the
magnetic field, We also define a generalized electric
field ef =*F* 'y, B and ¢ are g*-valued vector densities,
where g =g* via the adjoint invariant metric 4,

All g - and g *-valued tensors on M and S throughout
this paper, including those defined above, are fensorial,
except for A and ‘4 which are pseudotensorial, By this
we mean that they come, via pullback by a local section,
from tensorial forms on @ and P (or in the case of the
potential, from the pseudotensorial form w). (See Ref. 7
p. 75.) This property can also be expressed in terms of
behavior under gauge transformations, A gauge trans-
formation is a change of section from i to ¢, i(x)=
= R(S(x)) ¢)), where R(S(x)) indicates the action of
S(x) ¢ on the fiber 7 (x) and S; U~ G. A tensorial g-
valued object 7 transforms by 7=ad(S")7, and the
pseudotensorial potentials transform by A= ad(ShHA
+S*g, [Cf. (1,3) above, | g*-valued objects transform
so that gauge transformations commute with raising and
lowering of indices, Note that if P is nontrivial so that
there are no global sections, a g-valued function, such
as U in Theorems 1A and 1B below, may be defined
only locally, and its values will depend on the choice of
gauge (i, e., section),

For (pseudo) tensorial forms the wedge product is the
ordinary wedge product with respect to space or space-
time indices and a Lie bracket with respect to group
indices: e. g.,

(A~ Y= CO(ASFE + AYFG + AZFR),

The usual exterior derivative d on M or *S is replaced
by the covariant exterior derivative D; e, g.,

Do —dd+A~¢ for a tensorial form &,

D= dta+ LA~ = fa 4+ [0 1A = 4F,

{Cf, (1.1) above, The potential has a different formula
for its exterior covariant derivative because it is only
pseudotensorial; cf, Ref, 7, Chap, II, Sec. 5, Theorem
5,2, p. 77, and Proposition 5.5, p. 79. ]

In the following theorems, all tensor fields (including
the linear and nonlinear perturbations implicit in a
statement about linearization stability) may be taken to
be €7 or all may be taken to be in suitable Sobolev
spaces, Similarly throughout the paper “smooth”
means (” or belonging to a suitable Sobolev space.

Theorem 1A+ The Yang— Mills field equations are
linearization stable at a solution A if and only if for
all tensorial V:;3 — g such that [e, V]=0 and DV=0,
the image of V lies in the center of g. [See Notes (1) and
(2) below, |

Theorem 1B: The coupled Einstein—Yang— Mills sys-
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tem is linearization stable at the solution (‘g,!A) if the
following three conditions hold on M:

(i) trr=7*,1s a constant multiple of the volume ele-
ment u;

(ii) at least one of g, 7, ¢, and 8 is nontrivial; that
is, at least one of 7, ¢, and 8 is not identically zero,
or g is not flat; and

(iii) if X is a vector field and V a g -valued function
on M such that Lyg=0, Lym=0, Lye+[A00,e]l=Tle, V],
and F(X, )=DV, then X=0 and the image of Vlies in
the center of g .

Notes: (1) If the image of V is contained in the center
of g%, then V is a function in the usual sense because
it is invariant under gauge transformations and thus
is globally defined,

(2) For Theorem 1A (or if X=0 in Theorem 1B), if
the image of V lies in the center of g, then DV=0
[or F(X, }=DV] becomes dV=0, so V is constant,

(8) L4 T is the Lie derivative of a tensor T with re-
spect to X; e. 8., Lyg, =X, ;%X

(4) Lye +[A(X),€] is the gauge covariant analog of
L€, and F(X, ) is the gauge covariant analog of [, A,
Condition (iii) can be made more symmetric by replac-
ing F(X, )=DV by [y8+[A(X),8]=[8, V], but this
weakens the theorem slightly,

Theorem 2A; The Yang—Mills equations are linear-
ization stable at a soiution A if and only if there are no
symmetries of P that preserve ‘S and the connection
w except the action of the center of G on P, That is,
if X is a vertical vector field on P such that /,w=0,
then X is a generator of the action of the center of G on
P, i,e,, w(X)=constant in the center of g,

Theorem 2R: The coupled Einstein—Yang- Mills sys-
tem is linearization stable at the solution (ig, 4A) if and
only if there are no simultaneous symmetries on the
bundle P of the connection 1 form w and the pullback of
the spacetime metric g except the action of the
center of G on P, That is, if X is a vector field on P
such that /,w=0and Ly7*4 =0, then X is a generator
of the action of the center of G on P, i.e., X is vertical
and w(X) = const in the center of g.

Theovem 3; For the Yang— Mills and Einstein—Yang—
Mills field equations, perturbations of the initial data
split into three orthogonal components, At points of
linearization stability, these are the perturbations
violating the (linearized) constraint equations; the gauge
perturbations; and the “true degrees of freedom,” those
preserving the constraints modulo the gauge freedom.

ill. THE CAUCHY PROBLEM

Linearization stability of a hyperbolic system that
forms a well-posed Cauchy problem is equivalent to
linearization stability of any constraint equations on the
initial data. (See Proposition 3 at the end of this sec-
tion, ) We outline below the proof that the Yang—Mills
and Einstein—Yang—Mills systems are well-posed
Cauchy problems. In the process each system will be
broken up into constraint equations on the Cauchy sur-
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face M and Hamiltonian evolution equations, This
Hamiltonian formulation will prove useful in the proofs
of the main theorems.

A. The Hamiltonian formalism

Following the Arnowitt, Deser, and Misner formula-
tion of general relativity, ! %15 from the Lagrangian [
in (1,5) we derive the canonical momenta for gravity
and a Yang—Mills field, either separately or coupled:

al
if e P i
7= =(k - k)
P (emg u
and

i_ 8L g0 i

”a:a-Ag—'O’” s H=—6.

(Note: This 7} is Moncrief’s E¥,,* except for a factor of
i since he considers i g-valued tensors instead of
g-valued tensors,) The variables %g,, and ‘A% are
degenerate in the sense that their canonical momenta
are zero, It turns out to be most convenient to use as
degenerate variables the lapse V, the shift X, and a
tensorial g-valued function V, defined by

Yo=- (N -X'X,), ‘g,=X,, and A=~ V1,

X is a vector field on M and its indices are manipulated
by g rather than by ‘g, When G = 5! and the gauge field
is thus a Maxwell field, V is the usual scalar potential;
in the general case, V is still a scalar with respect to
coordinate changes on V, although it is a vector in the
Lie algebra,

For the Hamiltonian formalism, the action is ex-
pressed as

JL=lng o +nA, - VA= X] - VK, .1

where

H=1{= 37 )% mimy, 45 (kg + 88D g /% - Rg 11?2
={-Strr)’+7: T+ €+ B - R}y, (3.2)

/gi == 2”?1/ + nZ(A'},s- A‘;', + cbcA?Af)
- 2V-77+7])< ?B’
Ke=mp1;+ CSpAimi=von,

Here R is the scalar curvature of g; g*!/% = (detg;,)*!/%;
tr indicates the trace of a tensor with respect to g;

a tensor density T=Ty, so T is an ordinary tensor; -
and * indicate an inner product on one pair of indices
with respect to ¢ and y, respectively, so 7.7 =1T”’7rk’
rw=1"m,, ee=cle,, eTe=€kl, etc,; X is the usual
cross product of vectors on a three-dimensional
Riemannian space, 0 7% 8= [ijk]nl3%; v and ¥ are

the covariant and doubly covariant derivatives, and v-
and V- are the covariant and doubly covariant diver-
gences, so V-r=7"; and V.-n=g"(In)y; =g (2,
+CLAM) (=+Dxn);and € =¢ fe=7:7n and g =pB* 8. [The
inner product signs - and © in (3.1} are omitted because
the products there are natural, i.e., do not require

a metric, Note that because 7, 7, #/, §, and K are den-
sities, it is not necessary to multiply the right-hand
side of (3.1) by the volume element . | When G= 5!,

so that the gauge field is an electromagnetic field, ¢
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differs from the J of Ref. 3 by a term A% (¥-p); this
change makes § tensorial,

Let @ = (4, ﬂ,/{); then varying the action [/ :{ng'o
+n4 0 (N, X, V) ®} with respect to the degenerate
variables N, X, and V gives the constraint equations

=[/€]=0; (3.3)

varying with respect to g, A, 7, and n gives the evolu-
tion equations, Let a prime stand for the functional de-
rivative with respect to g, A, 7, and n, and let

{n,b,p, 6) be a variation in (g,4,m,n). {,b,p,0)c
domain of ®’,

¢r:(F, Aog, P, (Aleg)*)—~ (A%, x*, (A°xg)")¥),
where
$* = {smooth symmetric covariant 2 tensors on M},
={smooth ¥ forms on M},
A*@g={smooth tensorial g-valued % forms on M},
x = {smooth vector fields on M},

(A*2g)” = quotient of A’g gby the constant functions
with values in the center of g,

$2* = {smooth symmetric contravariant 2 tensor
densities on M},

A% = {smooth scalar densities on M},

(Alg g)* = {smooth tensorial g*-valued vector densi-
ties on M},

x*= {smooth 1 form densities on M},
and

(A" g)")* = {smooth doubly covariant divergences on
M}

= image of *D* = V-: (Ale g)* — (Al g)*.

[* indicates the natural L, dual, usually formed by
raising or lowering each index by g or y and corsidering
tensor densities instead of tensors, For (AYzg)",
observe the following. Let g, =center of § and let g, be
its y-orthogonal complement, Suppose that a basis
{X,}2, for g has been chosen so that X,... spans
9y and Xagsty oo+, X, SPANS §o. Now Ke=1h; +C§,,Ajnc
=}, for a< ”1- Let Ve A28, V=V, +V,, where V;
takes values in 8,. Consider |,V4. The constant part of
V, does not contribute to the integral, because it is in-
tegrated against a pure divergence, Thus V& (A'24)" is
the natural dual to K. | Note that as usual the perturba-
tion b of a connection A is tensorial even though A itself
is only psuedotensorial,

(JL)Y (hyb,p, 0)= [{~T ok =1,0b +pg o +6A
—(N,X, V&' (1, D,p, 0}
=[{(=7,0,=1,0,8,0,A,0) (1, ,,6)
- ®r%(N, X, VY(h, b,p, O},

where $’* is the formal L, adjoint of &/,

(3.4)
From (3. 4)
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it is immediate that the evolution equations have the
form

g

214 N

10 i et @3.5)
n v

where J is the antisymmetric matrix

0 1d
~Id 0 J, Id= identity.

Note that the left-hand side of (3.5) is in the domain of
®’, while the image of ®'* is in the dual space to this;
the rotation 7 matches the two sides of (3. 5) correctly.
We remark that (3. 5) is in Hamiltonian form and that J
is the symplectic form for this Hamiltonian system;
the symplectic manifold is the “L, cotangent bundle”

of the space of (g,A4)’'s; see Ref, 14, sec, 2 for a
discussion of this symplectic structure in the case of
vacuum spacetimes, and Ref, 16 for a general discus-
sion of evolution equations having the form of (3. 5).

B. Computations

We now state the derivatives &= (#,§’, ') and their
adjoints and the evolution equations (3.5) in detail,
See Ref, 14 and references therein for more detailed
calculations.

/’/'(]I,h,p, _({"
+3E)? - ot~
+ {—-%(’1’) R+ (hg){ f
[Uk](bu M C?chbbc) Baig-1/2
+ (= pirl + 2n¥p g2 + lmigt /2,
Gih,byp, 0)= = 2m ik ~ 207" gy = 3 gp14)
F DG~ b5y CL(ARDS + DIAN - 20,
+O5(AG - Ayt C%CA?Aﬁ),

{j+2wlk +;(n(fmaf+ Biﬁa!)}h_j

$(ning + 8iED}t ) g71/?
- h:y + Rt!h“}gJIE

(3.6)

K2, b,p, 6)=C

Letting ¢, be the derivative of ¢ with respect to g, etc.,

comabl + 6], + Coy61 Al 3.7
LN, X, V)=H AN+ %X + KV

— (= Tfkﬂ” + Zﬁ:kﬂi_,_ d(n;nai + BiBai)
Lhns + B"Bﬁ)}i,’”)gq”\"
- {(%VR _ V}g)gi] - VRH + Vlii}gl/Z

koii _ yk i)
- XM= XN,

+ {,-1' ”k)z - ;ﬂkmnkm

+ X 4 Xt (3.9)

S (N, X, VY= N+ S X + KoV

Z]k {(V k)[} abc BkCAJ} X nai]—Xlina
+ X‘um +X (nn!j c sz'f,n{:) chchmc + Cb Vu’
(3.10)
where C ;. =7,,Ch.=Cq,pc1, Decause v is adjoint
invariant.
PIF(N, X, V)= @7y = T3 )V + X+ X, 3.11)
Sr*(N, X, V):Vﬁ';+X’(A',’,,b—A i+ . AR AY) (3.12)

- V:ll - C:CA?VC°

Applying J and switching to invariant notation, we obtain
the evolution equations:
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(3.13)
(3.14)

g,0=N{27 - (trr) g} + Lyg,
A,Q:NU+ FX, )- DV,
m0= N{(trm)m = 2me7 = 330 + B7H)

+ (~Lrm)? + ST+ 4@+ B + 3R} g - Ric)p}

+{(AN)g" + Hess N}y + Ly, (3.15)

where Ric is the Ricci curvature, & is the Laplace—
deRham operator, AN=— N!{, HessN=N'/ g =gt
and

o=~ Vx(NB)+ Lyn+[AX),n]- @-n) X =y, V],

where ¥ x is the doubly covariant curl [cf, first term in
(3.10); ¥ x can also be written * D]. These equations are
coordinate and gauge covartant, A compulation shows
that F(X, ) =/4xA - D(A(X)) is the “gauge covariant Lie
derivative of A,” i*(Lie derivative of w with respect to
the horizontal lift of X), Similarly [,n+[A(X),n] is the
“gauge covariant Lie derivative of 7,” z'*[Lie derivative
of (., lift of Z) with respect to the horizontal lift of X].

(3.16)

For the Yang— Mills field alone, uncoupled to gravity,
the constraint on the initial data is

K(A,W)dgK(g,A;”,ﬂ):O,

where g and 7 are induced by the given background
spacetime, The evolution equations are given by (3,14)
and (3,18),

C. The nonlinear problem

We are now ready to state precisely the sense in
which the Yang— Mills and Einstein~ Yang—Mills sys-
tems are well-posed Cauchy problems, These proposi-
tions, and the linearized versions which follow, are
stated for Sobolev spaces W*® defined using L, norms as
in Ref, 9, Chap. 7

Pyoposition 1A: Suppose Ac W*7(M) and ne W3* (M),
7= 0, satisfy the constraint K(4,n)=0. Then there is a
gauge field ‘A satisfying the Yang—Mills field equations
on *S that induces A and 1 on M, *A e WA (U) for every
relatively compact U %S [by abuse of notation we write
this ‘A4 ¢ WA*r(S)], depends continuously on the given
initial data (4,7), and is unique up to gauge
transformation.

Proposition 1B: Suppose g and A= W4T (M) and 7 and
nEWr (M), =0, satisfy the constraint equations
®(g,A,m,7)=0, Then there exists a maximal spacetime
1S with metric % and gauge field ‘A satisfying the
Einstein— Yang- Mills system and an embedding
e: M —14S guch that ¢ and %4 induce the initial data
(g,A,7,7m) on M, ‘g and tAc W' (S) (notation as in
Proposition 14) and depend continuously on the given
initial data, (*S,%,*A) is unique in the sense that any
two such developments (4S, 4z, %4) and (45, 43, 4A) can be
transformed into each other by a simultaneous coordi-
nate and gauge transformation, That is, suppose P and
P are the G-bundles with projections T and 7 to %S and
45 and connections w and & that give rise to 4A and 4A
Then there is a bundle isomorphism & p— P such that
7¥%° =&:M — 43 for any section i: e(M) ~ P, Ww*7xig
=1, and ¥*© =w (equivalently W*7*44 — T*4A)

It is probably possible to reduce the required degree
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of differentiability by one (i. e., replace W4 and W3*
by W3*" and W**", respectively); cf. Ref. 17 for treat-
ment of the vacuum case.

The proof of these propositions is a generalization of
the work of Choquet— Bruhat on the Cauchy problem for
gravitational and electromagnetic fields; see, e.g.,
Ref, 9, Chap. 7 or Ref, 18, The Yang—Mills field
equations are a quasilinear second-order hyperbolic
system. In a generalized “Lorentz gauge,” the principal
part of the system decouples to give »n copies of the
principal part of Maxwell’s equations; the existence
argument for Maxwell fields and Maxwell fields coupled
to gravity generalizes to Yang—Mills fields, and we
have existence and uniqueness in Lorentz gauge (and
harmonic coordinates),

By considering first other Yang—Mills gauges and
then other coordinates, one can show that there is a
unique gauge and coordinate transformation from any
solution to the unique solution in Lorentz gauge and
harmonic coordinates, If the bundle P is nontrivial
(i, €., if A can not be defined globally), the argument
becomes somewhat involved, but uses no new ideas;
see Ref. 19 for details,

The continuous dependence on initial conditions and
maximality follow as usual. (See Ref. 9, Chap. 7.)

The following remarks show that Proposition 1 im-
plies that the Hamiltonian evolution equations (3, 5) have
unique solutions for every choice of N, X, and V with
4X=NZ+ X timelike, First note that given a solution
(43, ‘g, 44) to the Einstein—Yang— Mills system the
degenerate variables N, X, and V determine * 2o, and
A2, and thus determine the “timelike curves in P”
through @ = (P restricted to M), When N=1 and X =0,
these project to unit speed geodesics in *S normal to 34;
when V=0, the curves in P are horizontal with respect
to the connection w. Any N, X, and V given on RXM
define a bundle map from R X into P by picking out
the timelike curves that should be the image of the
curves R Xp, p<q; the pullback of the metric and con-
nection on P to R x@ gives a solution to (3. 5) which is
clearly unique,

D. The linearized problem

We shall also need a similar result for the linearized
equations, This is essentially a corollary of the proof
of Proposition 1, which involves solving the linearized
equations and then using an iteration argument to get
the nonlinear result. However, there is a minor com-
plication involving change of variables, In the proof, the
equations are linearized with respect to the Lagrangian
variables ‘s and ‘4; we need a result for linearization
with respect to the Hamiltonian variables g, 4, =, 5
and the degenerate variables N, X, and V, Lineariza-
tion (and linearization stability) depend on which vari-
ables are linearized, For example, the nonlinear
equation

F(xq,x,) =x% + 3

is not linearization stable at the origin, because its
linearization

ZthI + szhz = Ohl + th = 0,
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is trivial there. If we let y;=x%, then the original
equation is already linear: y; +v,=0. Clearly the prob-
lem here is a singular change of variables, If there is a
nonsingular change of variables, linearizing with re-
spect to one set of variables is equivalent to linearizing
with respect to the other., For suppose x=f(y), y =g),
Jfog = identity =gof. Then lmearlzahon of F(x)=0 is
equivalent to linearization of G(y)% F(f(v)) 0 because
h solves F'(x)«h=0 if and only if EE g'(x) h solves

G )k =0: G'(y)k=F(f(3)f"(9)-g'(x)-h=F'(x)

- (identity)’ -2 = F’(x)-h, The variables g, A, 7, 5, N,
X, and V are uniquely and differentiably defined by the
variables ‘g and ‘A (and their derivatives), and vice
versa, so that the linearized theorem for the Lagranian
variables which falls naturally out of the proof of Pro-
position 1 is equivalent to a result for the linearized
Hamiltonian equations,

h F

5

2| b L M b
—_— = Jopr*x Y + Jopr¥t | X . (3° 17)
ot p py’

2 v v I

both results are combined in Proposition 2 below, Here
(L,Y,W) is a linear perturbation of (N,X,V), so LeA°,
Xey, and WeA°® g,

For initial data for the linearized theorem, we have
(h,b,p, 8) on M satisfying the linearized constraint.

&' (h, b, p,0)=0, (3.18)

To construct initial data for the Lagrangian version of
the results, we need in addition to specify (L, Y, W) and
their first derivatives on M, From these we define ‘
and %6 on M by:

4hu:hm

gy =hy X+ Yy,

Yhogg=—2NL +2X, ¥ '+l XX, (3.19)
4?)‘::1}%,
8= - we,

The background metric and potential (*g,%A) determine
(¥, X, V) everywhere, Using (3,17) we find &, and

b5, on M; we now know the first derivatives of 2, 0, W,
X, L, ¥, and Won M, so by differentiating (3.19) we
can determine %, , and 4% , on M,

Proposition 2A: Suppose *A is a solution of the Yang—
Mills field equations on *S and we have initial data b, 6,
and W on M for the linearized system as described
above. Then there is a solution *b to the linearized
(Lagrangian) field equations with the given initial data,
and any two such solutions differ by a linearized gauge
transformation, [See (3. 20) below, | Equivalently, for
each choice of gauge V and linearized gauge W, the
linearized Yang— Mills evolution equations [(3.17) with
h, p, L, and Y set =0} have a unique solution (b, 6},

Proposition 2B: Suppose (g, *A) is a solution of the
coupled Einstein—Yang~— Mills system on 45, and we
have initial data on M for the linearized system as
described above, Then there is a solution (‘z,*b) on ¢S
to the linearized (Lagrangian) field equations with the
given initial data. Any two such solutions differ from
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each other by a linearized coordinate and gauge
transformation:

G- = L4}4g,

B-th=1,14 ~D(EY)) - DWW = (3. 20)
with '%,, 4%,.,, ‘W, and ‘I, all zero on A1, Equivalent-
ly, for each choice of (gravity and Yang— Mills) gauge
(N, X, V) and linearized gauge (L, Y, W) on {S=R XM,

the linearized equations (3. 17) have a unique solution
(i, b,p,0).

FY, y- D'W

Remark: The linearized coordinate and gauge trans-
formation can be interpreted as Lie derivatives on the
bundle P: Ly fg=i*(L, 7*4g) and L4~4A DEACY) + W)
_z*(Lm}w), where my = the horlzontal lift of 4Y- (gen-
erator of the G action on P corresponding to 4W) Cf.
proof of Theorem 2 in Sec, IV,

Proof: We give the proof of 2B; 2A follows by setting
the perturbations of the metric to zero throughout.

It suffices to consider the case where (ig,*4) are in
harmonic coordinates and Lorentz gauge, as the other
cases follow by a change of coordinates on the bundle
P, Thus, throughout the proof, (N,X,V) in (3.17) are
fixed, By the details of the proof of Proposition 1
{(given in, e.g., Ref. 9), there exists a unique solution
(*n,4b) to the linearized equations satisfying given
linearized coordinate and gauge conditions. Now as in
Ref, 14, sec. 4, we can decompose any symmetric 2
tensor % on *S uniquely as

Y=+ Ly 2 3.21)

with ¥, and V., equal to zero on M and (4%,®
— 48 u") =0. Similarly, given ¢¥, any g -valued 1
form 4b can be uniquely decomposed as

=B + Lo tAg - D CAET) + W), (3.22)

where ‘W and 4WO are zero on M and T4 =pse

+C8, 14%pea— g [smce 4 satisfies an equation of the
form (1.20), P, 237, Ref. 9. For any *Y and ‘W, the
quantities L,; ‘g and Ly *A-DCACY) +4), which are
simply the derivatives of g and ‘A under a simultaneous
coordinate and Yang— Mills gauge transformation (i, e.
a coordinate change on the bundle), will solve the
linearized equations, Thus, if (*,%) is a solution to
the linearized equations, by linearity (412 4b) will also
be a solution, But (4%, 4p) satisfy linearized harmonic
coordinate and Lorentz gauge conditions, and so must
be the unique solution given by the linearized result in
the proof of Proposition 1, Let (4%, b) be that unique
solution; then (*%,%b) as in (3.21) and (3.22), for all
possible 47’s and 4W’s with 47, 47 ,.,, ‘W, and ¢W,
equal to zero on M, give all the possible solutions to
the linearized equations, This completes the proof of
the “Lagrangian half” of the theorem,

By the remarks before the theorem on the equivalence
of linearizing the Lagrangian and Hamiltonian equa-
tions, any solution (4%, 4b) to the linearized Lagrangian
equations gives rise to (4,b,p0,0) and (L, Y, W) (as
functions of f) solving (3.17). To complete the proof of
the theorem, we need to show that we can specify
(L, Y, W) arbitrarily and still get a unique (h,b,p,0).

It will suffice to prove the following lemma,
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Lemma: The choice of linearized gauge (L,Y,W)is
equivalent to the choice of (*7,*W) in (3. 21) and (3. 22);
that is, for every choice of (L, ¥, W) on RX =15,
there is a unique *¥ and ‘W on 49 so that (3.19) holds
for (*h,%h) as in (3.21) and (3.22).

Proof; Suppose the soiution (45, 45) is known and
(L,Y, W) is given, Using (3, 21) to eliminate % in
(3.19), we find that

gy + 14;,4,90:' = (b + L)X + 1

and

Yoo + L yggu == 2NL+ X ¥+ (hyy + Ly, XX
=~ INL + X, ¥+ (Yhy, + Lz X"

We can rewrite this as

Lyi'gon - (Laj'gy )X’

(- 2NL XY+t — 40y, for p=0

Y, + 4y, X7 - 4y for u=1i,

Change coordinates so that 3/0x% — 3/8x° - X; then the
equations become

oo .
=function independent of ‘Y.
4Y();i +4YI;O

This is a first~order linear hyperbolic system with the
x° coordinate curves as multiple characteristics, and
has a unique solution ‘Y defined for all time,

Now consider the equation for 4ﬁ’ obtained by using
(3. 22) to eliminate ‘5 in (3.19): 1 ot L' A0~ Dy (*A(Y)
+4WY=— I, This first-order hnear hyperbohc system
with multiple characteristic tangent to 3/5x° also has a
unique solution 4 for all time. Thus given an arbitrary
(L, Y, W), we can produce the unique desire *¥ and 4",

From Propositions 1 and 2 we can conclude, just as in
Theorem 5.4 in Ref. 14, the following:

Proposition 3: The Yang-Mills or Einstein— Yang—
Mills equations are linearization stable at ‘4 or (*g,%4)
if and only if the corresponding constraint equations are
linearization stable at (4, n) or (g,4,7,7).

IV. PROOF OF THE MAIN RESULTS

We first show that the siated conditions are sufficient
for linearization stability, and then show that some are
also necessary, To show sufficiency, we use the implic-
it function theorem (IFT):

IFT: Suppose X and Y are Banach spaces and ®: X —~ Y
is a C" map, ¥ 21, ®{x}=1,, ker®’(x;) splits {i. e,
has a closed complement X; 80 X =ker®’(x,) ¢ X ], and
®/(x)) is surjective. Then {x: ®(x) =y,} is a C” manifold
near x, with tangent space ker<1>’(x0)~{k @7 (xy)- % =0} at
Xgo

Comparing the conclusion of this theorem to the
definition of linearization stability shows that the
hypotheses of the IFT give sufficient conditions for
linearization stability of ¢ =y, at x,.

The key to the application of the IFT to the Yang—
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Mills and Einstein—Yang— Mills systems is the fact that
the adjoint operators K’* and ®/* defined in Sec. HI

are elliptic. There are several reasons for this, The
applies to Banach spaces, so we must use Sobolev
spaces in the proof of the theorems, (Specifically, we
use W* spaces with s sufficiently large to make X and

& C” maps and take care of other technical details; cf.
discussion of such details in Ref, 14, Sec. 1, and

Ref, 19.) The ellipticity of A** and ®’* gives a regular-
ity lemma that allows generalization of the results to
C~ spaces, The technical condition in the IFT—that
ker®’ splits—follows immediately from the fact that
®r* (or K+*) is elliptic. Finally, the ellipticity of ®7*
implies that ¥ =ker®*@Im®’, so A/ or &’ is surjective
if and only if its adjoint is injective.

Thus conditions under which the adjoint operators are
elliptic and injective are sufficient for linearization
stability. To show necessity, we will show that linear-~
ization stability is inconsistent with a nontrivial kernel
for the adjoint operator,

A. The adjoint operators are elliptic

We first consider the coupled case. &’* is a linear
partial differential operator

(A x, (A0 )) (5%, (A
(V, X0, 1) = (04, 6, Iy, ).

z28 )*’ 523"{\18 g)

It is elliptic in the sense of Douglis and Nirenberg as
extended by Hormander, 2* Let ®’*,, represent the opera-
tor ®/* restricted to the jth “component bundle” of its
domain and projected on the ith “component bundle”

of its codomain, j=1,2,3, 7=1,2,3,4, Douglas and
Nirenberg introduced the idea of weights s; and /, such
that the order of ®’*;; is less than or equal to /; - s,

The principal part of ®/*,, is defined to be the part of
$*,; that is of order ¢, — s; exactly, and the principal
part of $’* is the matrix of principal parts of the &/*,,’s,
The principal symbol of the operator is now defined in
the usual way.'*™ Let t,=t,=2, t,=1, s;=5,=5,=0,
and s;=1; then the only nonzero principal parts of ¢/*
are &%y, ®/*5 . and $7*,5. [Cf. (3.9)—(3.12)]. For each
vector £ T *V/, the principal symbol of ®/* is

o(£): (v, XF, V)

SN EPe - B, 0, (5% T 5X), Veg). (4D
®* is said to be elliptic if o(£) is injective for every
£+0. But if £+0 and 0(£)(V, X, Y)=0, we see imme-
diately from (4.1) that X=0 and V=0, Contracting the
first slot in (4.1) gives V(31£1%~ 1£1%) =21£12N=0
because ¥/ is three dimensional, so ¥=0, Thus ®'* ig
elliptic,

For Yang— Mills fields alone, we consider

K '*3(A0®g)~°’ ((A1®g)*,A1§§g),

— ([Tf! VT, - DV) (4° 2)

[ef. (3.10) and (3.12)], which, as above, has injective
symbol and is therefore elliptic.
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B. The Cauchy surface conditions imply that the
adjoint operators are injective

K'* is injective exactly when the conditions of
Theorem 1A hold, Comparing the conditions and (4, 2)
shows that Veker A’* implies that V takes values in the
center of 8§ and DV=dV=0, so V is a constant in the
center of 8, i,e., V=0 in (A’gg)". Conversely, if
ker K* ={0}, the conditions of the theorem hold. Half of
Theorem 1A is now proved,

To prove Theorem 1B it suffices to show that the
three conditions stated in the theorem imply that &/* is
injective, So suppose that (N, X, V) cker®’* and condi-
tions (i)—(iii) of the theorem hold, Then equations
(3.9)—(3.12) are equal to zero, The trace of (3,11) is

W:szk”za (403)

Combining this equation and (3. 11), one can compute
that

(Lym)g=X"a}, +{2Nn'*7,, - IN(T) g2, 4. 4)
The trace of (3,9) is
0= Ni{= 5(m)* + 277, + S(ngry + D172 (4.5)

1] 1/2
-9\ I)ag/ +Xk7rf“k,

where we have used (4. 4) and the constraint /=0 to
eliminate the £ 7 and curvature terms, By condition
(i) the last term in (4. 5) is zero, Now multiply (4. 5) by
¥ and integrate over M to get

. I S
0 =2 Nk ki1 +§fN2m"n§u +§JNZBZB§ZH + ZfN"’N:ku

(4.6)

recalling that &, = 27%,g;, - 7;; =0 if and only if 7"/ =0.
Observe that (4, 6) implies that each integrand is zero,
so N is constant, Nk =0, Vnp=0, and ¥V3=0, Condition
(ii) now forces N=0 by the following argument. If one
of k (equivalently, 7), n=-¢, or 8 is nonzero, V=0
is immediate from (4.6), If all three are identically
zero, then #=R =0, and 4’*(N, X, V) =0, the first
equation of ®/*(N, X, V)=0, reduces to

(NRY + N'* , gt)g!/2 =0, @.7)

However, (4.86) implies that N is constant, so (4.7)
reduces further to NR¥ =0, V is three dimensional, so
the Ricei curvature ¥ =0 if and only if g is flat; by
condition (ii), g is not flat, so ¥ must be identically
Zero,

With ¥=0, ®'*(N, X, V)=0 reduces to
OZXilkTrkf +Xflk7Tik_ XkTT”m—Xk[k’fT”:_ LX”’

0=—Xniy, - Ximi+ Ximl+ X (n]); + CSH Alm))

4. 8)

- XICe Al - €& VP
=-Lyn+ (VX =[AX) + V, 0] =/ ye+[A(X), €] - [¢, V],

4.9)

because K=V «n=0,
0=X;;+X;,=Lyg, (4.10)
OZXI(A?U‘ Aft C%cAgAf) -Vii- C'r':cA?Vc (4.11)

= [yA- D(A(X)+ V)= F(X, )- DV,
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By (iii) this implies that X =0 and V has values in the
center of §. As in the proof of Theorem 1A, this im-
plies V=0 in (A’z §)". This completes the proof of
Theorem 1B, For the variation of the theorem men-
tioned in note (4) following the statement of the theorem,
we need only show that (4.11) implies that 0= /.3
+[A(X), 8]1-[B, V]. This follows from a tedious but
straightforward calculation using the Bianchi identity
for g, the Jacobi identity for g, and (4.10).

C. Identification of symmetries and the kernels of the
adjoint operators

For Theorems 2A and 2B, (0,0, V) ¢ domain K** and
(N, X, V) « domain ¢/* must be identified as vector
fields on the bundle and then A’*(0,0, V) and ¢'*(N, X, V)
must be interpreted geometrically, Let ‘X=NZ+X, a
section of (T*S restricted to M), and let ™X = (horizon-
tal lift of 4X) - V,, where V, is the tangent to the fiber
corresponding to V< g, Because V is tensorial, "X
is a right-invariant vector field on ¢, (Note; the minus
sign corresponds to the sign in V== 4A0.7 ) Suppose "X
is extended to all of P so that it is right invariant, Then
the flow of "X is a one-parameter family of bundle
automorphisms, or, in other words, of simultaneous
coordinate and gauge transformations, Let 7%(}) and
w (A) be the pullback under this flow of 74g and w. For
small A, ¥ is spacelike in the metric ‘¢(}) =i* 7+ (}),
s0 £(\) and w(}) induce (g,4,7,7)(A) on M, I ¥ - XX,
>0 so that X is timelike, this is the evolution of
(g,4,7,n) in 4S with lapse N, shift X, and gauge V, so

h I
N
b d:afi A — Jodrk N (4.12)
P oA | P
0 n v

from the derivation of the evolution equations in

Sec. III. Now (%,b,p, 8) are the “Hamiltonian variables,”
which depend linearly on the corresponding “Lagr  ian
variables,”

4, — L4X4g:i*/_mx7-*4,
and (4.13)
=Ly A~ DEAEX)+ V) =i* L, .

(Cf. discussion of linearization before Proposition 2 in
Sec. III. ) Note that mew is horizontal, i.e,, tensorial,
and so is completely specified by 5.) *z and b in turn

depend linearly on "X, Thus by linearity, (4,12) holds

for all (N, X, V), because the timelike vectors span the

tangent space,

(4.12) and (4, 13) suggest that the elements of kerd*
are symmetries of the fields, (This idea for gravity
alone is due to Moncrief.?) So suppose

[ (4,14)

™ =0 and /[ my® = 0

mx

for a vector field "X on P, Let U be any generator of
the group action on P and let Y be the horizontal lift
of any vector field on 4S to P. Then

O:L,,,Xw("'U):dw('"X,’"U) + " (w ("X))
="X(w("U) - ("X, "U) = - 0 ("X, "U])
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and
0=1, m™%Y,"V)
:"‘X(T*"‘g(’"Y ) -
Y, ["x,"U))
"y, ["x,™U))
using the fact that U is vertical and ™Y is horizontal,
This implies that ["X,"U]=0, i e., "X is right in-
variant, Thus %X = 7,"X is well defined and the vertical
component of "X is a tensorial function - V:P—~ @,
Let NZ and X be the normal and tangential components
of 41X on M. From (4.12)—(4.14), we see that (N, X, V)
cker ¢'*.

("X, "Y],"0)
- g

— 7*4

{Recall that V is actually a tensorial function modulo
constant functions with values in the center of § . Those
constant functions correspond to the action of the center
of G on P, which is always a symmetry for any 7%
and w, We will call such symmetries and their genera-
tors, "X =~ V.= const, trivial, because they corre-
spond to the trivial element of ker®’*,)

Conversely, suppose we have an element of ker®’*,
We shall need to apply Proposition 2 in sec, III, so to
avoid confusion with the gauge (N, X, V) and the per-
turbed gauge (L,Y, W) in the statement of that theorem,
let (L Y W) be the given element of ker®'*, Let
tYy=Lz+VonM and "V = (horizontal lift of ¢7) -

W, on
H
@. We will extend my uniquely to all of P, so that

‘h=1/43" and b=/,;*'A-DEA(D)+ fV):i*Lml;w
(4,15)
are identically zero, Suppose the gauge (N, X, V) is
fixed, Consider the lemma in the proof of Proposmon
2. Let %1=0 and *b=0 on V. By the lemma, for any
choice of (L, Y, W) we get existence of a unique 4% and
4 on *S so that {4, 15) [which corresponds to (3. 21)
and (3, 22)] holds, We choose (L, Y, W)=0 so that by
(3.19) *hy, =0 and 46, =0. (In Sec. I, *¥ and 4% were
zero on M, but the 1emma clearly apphes for any initial
data.) Now with %% and *b as in (4.15), the correspondmg
Hamiltonian variables (i, b,p, 8) =J°s'* (L 7, W)=
on M [cf. discussion of the geometric meaning of
&'*(N,X, V) above], and satisfy the linearized evolution
equations (3. 17) with perturbed gauge (L, ¥, W)=
by the way ™Y was extended to P, By Proposition 2,
the obvious solution (%, b, p, #) =0 is the unique solution,
s0 ‘2 =0 and *6 =0. Thus we have established a one-
to-one correspondence between kers’* and the set of
nontrivial simultaneous symmetries of T*4g and w; by
setting all objects related to gravity (e.g., N, X, L, Y,h)
equal to zero in the above argument, we have a one-to-
one correspondence between kerk’* and the nontrivial
symmetries of w which preserve %S, This proves the
sufficiency of the conditions in Theorems 2A and 2B.

D. The second-order conditions

It has been shown above that kerX”* or kers’* is trivi-
al exactly when the conditions of Theorems 14, 2A, or
2B, as appropriate, hold. To show that these conditions
are necessary as well as sufficient for linearization
stability, we assume stability and nontriviality of the
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kernels. From these assumption come second-order
conditions on the linear perturbations. In the following
sections, we show the existence of linear perturbations
violating these second-order conditions, This contradic-
tion shows that the assumption was false, and lineariza-
tion stability requires that the kernels be trivial; i.e.,
the conditions of the theorems are necessary, and when
they are violated we have linearization instability.

Assume that A(4,7)=0 is linearization stable at
(44, 7). Then for any solution (b, 6) of the linearized
equation

K*(Ag,mp) (b, 6)=0,
there is a one-parameter family (A(\),n(1)) such that

(4(0), 7@} = (4, mp), (47(0), n(0)) = (b, 9),

and

KA, n(2))=0 (4.16)
Differentiating (4. 16) twice and evaluating at x=0
yields
K" (Ag, ng)+ (A7 (0), 1" (0))
+ A" (A, mp)- (b, 9), (B,0))=0. 4.17)

Now assume that there is V#0 in kerK’*, Contract
(4,17) against V and integrate over ¥ to get

0 :fMV'{K'(‘A'(O); T)”(O)) + k”((bs 0); (b’ 9))}
=[ k() (47 ©0), 77 (0)) + V- k(B 6), (&, )}

:fMV-K”((b,G),(b,G)), (4.18)
a second-order condition on the linear perturbation

(b, 8). Similarly, a nontrivial (N,X, V)< ker®’* gives
rise to a second-order condition on linear Einstein—
Yang— Mills perturbations (%, b, p, 6),

S, X, 1) @0((n,5,p,6), (1, b, 0, 6)) =0 (4.19)

We note that the second-order condition is analogous
to the quadratic algebraic condition on the moduli space
in the theorem of Kuranishi on small deformations of
complex structures (See, e.g., Ref. 21 and references
therein), This theorem has been used by Atiyah,
Hitchin and Singer?? in the study of the space of self-
dual Yang—Mills fields on Riemannian manifolds, In
the cases considered by Atiyah, Hitchin, and Singer,
the second cohomology of a certain elliptic complex
(analogous to ker A’* or ker®/* in the present work) is
trivial, so that the theorem of Kodaira, Nirenberg, and
Spencer (which the Kuranishi theorem generalizes)
gives a linearization stability argument, In the case
that the second cohomology is not trivial, the Kuranishi
theorem says that the space of nonlinear deformations
of complex structures is (locally) parameterized by
linear deformations % satisfying

B(Q(h,r) =0, 4. 20)

where € is a certain quadratic function and H is pro-
jection onto the second cohomology., If ¥ is projection
onto ker A”* or ker®’* and € is ~” or ®~, then (4, 20)
is our second-order condition, This suggests, as has
been suggested before® 423 that at points of linearization
instability, the second-order condition is sufficient to
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select exactly those linear perturbations which are
tangent to curves of nonlinear perturbations. This ap-
pears to be true in the case of gravity alone, %4

E. Instability for symmetric Yang-Mills fields
Differentiating (3. 8) and substituting into (4, 18),
2/ Co, venjel=2f[V,bli0=0 4.21)
for each Ve ker K’*, We wish to find (b, 6) satisfying
K'b,8)=v-6+[b,n]=0 (4.22)

and violating (4, 21). This is most easily done using a
particular gauge for the background fields (4, n) that

corresponds to a reduction of the principal bundle P,

From (4, 2), VekerA’* means

DV=0 and [n, V]=0, (4.23)

Recall thatg = g, g,, Where g is the center of g and
g0 its orthogonal complement, Let V=V +V,, V;cg;.
Now DV, =dV; gy, and DV, < g, because Cp,3=0.
Therefore, by (4.23), DV,=dV;=0, and so ¥, =0 in

(A’ gq)". Thus, it suffices to consider V=1, Letg "
be the centralizer of V(p) for any one pc P; g7 is a
subalgebra of g, and let G be the corresponding sub-
group of G, By the holonomy theorem of Ambrose and
Singer combined with a reduction theorem due to
Cartan, Ehresmann, Kobayashi, and Nomizu (Ref, 7,
Theorems 7.1 and 8.1, pp. 83—90, and note 2, p. 288),
the bundle and its connection may be reduced to a bundle
and connection with group GV, The reduced bundle may
be identified with {g: p and ¢ are joined by a horizontal
curve}, a subbundle embedded in P, By choosing sec-
tions of the subbundle, we can assume that the range

of A, Band nc g”, and that V= const because 0 =DV
=dV on horizontal curves, Similarly, if there are any
other functions W such that DW=0, we may assume
that the bundle has been reduced and the gauge chosen so
that 4 and B take values in g"" g” and W =const,

Let g "* be the y orthogonal complement of g” ing.
Note that D and D* map A*® ¢¥* into A™® g "* (for ap-
propriate k and ) because for We g"*

Ta, wlrg" =[¢", Al Wc g"s W=0 (4.24)
(again using Cy,,.,=0). Consider

D*:A1® gVL_, Ao® g“,
which has surjective but not injective symbol, just like
the ordinary divergence d*, By Theorem 1 of Ref, 25,
this implies that kerD* is infinite dimensional. Now
consider

T: kerD* — ¢ "*,
Wi [

T has nontrivial kernel because g'* is finite dimension-
al while kerD* is infinite dimensional; let b be any non-
zero element of ker7,

Let 6=06'+ Dy, where V- 6'=— D*¢*=0, We will
choose u so that the linearized constraint equation
(4. 22) is satisfied and choose 6 so that the second-order
condition (4, 21) is violated, (4.22) becomes

-V 0=D*Dy=2au=[b), (4.25)
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where A= D*D is the “gauge-covariant Laplace—deRham
operator” on g"*-valued functions. Just as for the usual
Laplacian on a compact manifold, (4.25) has a solution,
unique up to kerA=kerD= {covariant constant functions}
if and only if [b;n] is orthogonal to kerD, But the gauge
was chosen so that if WekerD, then W is constant; then
I(omisw)=([b;n]Y*W=0, because b« ker?T, Thus we
can solve (4, 25) for p e A'g g"*, (4.21) becomes

2fJv,blTe=2[,[V,b]76 =0,
because

(4.26)

7, DL =, Cy Vo0, + oy ANy
= —IMC‘sz“(bfu + CZ, Ajb{)ﬂdycde‘»’”
:.f,u[ V, D*b]*p =0,

using integration by parts, V= const, C,,.,=0, the
Jacobi identity ing , [V, A]=0, and b ckerD*, It suffices
to show that there is at least one element 6§ ekerD*

such that (4. 26) does not hold, Assume not; i, e., as-
sume that (4, 26) holds for all §*, Then [V, b] is orthogo-
nal to kerD*, so [V, b]=DW for some WcA’sg"*, and
AW=D*[V,bl=d*[V, ] +[4;[V, b]]=[V,d*Dd +[A;D]]
=[V,D*b]=0, using V= constant, the Jacobi indentity,
[v,A]=0, and b ckerD*, Thus WckerA=kerD, so
[V,b]=DW=0, But b takes values in ¢ "*, so this

forces b to be zero, This contradiction proves that there
is a 8% so (4, 26) does not hold. Thus, a Yang— Mills
symmetry Ve kerK‘* is inconsistent with linearization
stability. (We thank Kobayashi for suggesting the final
argument, and Singer for inspiring the approach to
gauge fields used in the above proof., ) Theorems 1A and
2A are now proved,

F. Instability for symmetric Einstein-Yang-Mills fields

To complete the proof of Theorem 2B, we show the
existence of (i, b,p, ) cker®’ and violating (4.19). First
consider the case where (N, X, V)=(0,0, V) eker®’*,
Then "X is a vertical vector field on P, that is an in-
finitesimal change of Yang— Mills gauge only, and
(4.19) reduces to (4,18), For the (b, 8) shown to exist
in Sec. IV.E, (0,b,0,0)c kers’*, by the following argu-
ment, 8 and n take values in g ¥ while o and ¢ were
chosen to take values in g"*, ¥ xb=*Db will also take
values in ¢"* by (4, 24), so

410,5,0,6) =V xb B+ 0%7=0
and
91(0,0,0,8)=nx * (T xb)+ 6x =0,

When (N, X)+#0, then the argument for the existence
of a linear perturbation violating (4. 19) goes exactly as
in the case of gravity alone, *® (The addition of the
Yang— Mills fields adds purely algebraic terms to the
differential operators involved, so that the analysis is
not affected, ) We briefly sketch the argument, Since
nonzero elements of ker®’* correspond to symmetries,
the existence of such elements is hypersurface invariant
and we may, by choosing an appropriate hypersurface,
assume N+0, say N>0, on Uc M, We construct
operators P:S%— (A!, A% and 7: 5% — $** such that
(4.27) and (4, 28) below hold and

K={(r,0,p,0): P()=0, p=T(h),
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and supph < Ulc kerd’*,

and again using Theorem 1 of Ref, 25, K is infinite
dimensional, For elements of K, (4,19) becomes

TN 3R+ 3(v trn)?)

+ (lower order terms in 2 and p)}=0, 4.27)
P is chosen so that
[l trhll, < constll2ll,. (4, 28)

From (4.27), (4.28), and P(h)=0, integration by parts,
and the Schwarz inequality, it can be calculated that

[7ll; < constl|Zl,,

which by Rellich’s theorem gives a compact embedding
of KN W'in WP, This contradicts the infinite dimen-
sionality of K, thus showing the existence of perturba-
tions violating the second-order condition and complet-
ing the proof of Theorems 1A, 1B, 2A, and 2B,

G. The splitting theorem

This theorem, which in the Einstein—Yang— Mills
case generalizes that of Moncrief?’ for gravity alone,
follows immediately from application of a general split-
ting in sympletic geometry given in Ref. 28. X and &
are moments for the actions of the group of bundle auto-
morphisms of @ which fix M and the dynamical group of
coupled gravitational and gauge fields, respectively.

The generators of the group actions are given by the
ranges of J°K’* and J°&’*, Applying the splitting theo-
rem in Ref. 28, we have
(A'gg, (Alpg)*) =ImK*® ImJoK"* P ker(- K'J) ker K’
and
(%, A2 q, S**, (A'@g)*)

=Im®'*® ImJ° s * @ ker(~ @'*oJ) N kerd’,

In each splitting, the sums are L, orthogonal, and at
points of linearization stability the first, second, and
third summands are as stated in the theorem,
respectively.
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Solutions to the classical coupled Maxwell-Dirac and Klein—-Gordon—Dirac equations in a space-time

of dimension four are considered. These equations are invariant under the 15-dimensional conformal
group, in the case of zero mass. The resulting conservation laws are explicitly exhibited in terms of the
Cauchy data at a fixed time in a form suitable for analysis by the techniques of partial differential

equations.

1. INTRODUCTION

The Maxwell—Dirac equations are the basic equations
of relativistic quantum electrodynamiecs, In the notation
of Ref, 1 they take the form

@% - M)yp=gAd,

Gl
o F =gl (1)
where
aA®  pAY
uy _ -
= ox, ox,

Mathematical as well as physical interest centers on the
questions of global existence of solutions to the Cauchy
problem and their asymptotic behavior,

We consider solutions of the Cauchy problem for the
classical versions of these equations in a space—time
of dimension four. Global existence of such solutions
is an open problem. Only in the case of one space
dimension has it been established and the asymptotic
behavior of solutions analyzed, *™*

A similar situation prevails for solutions to the
classical Klein—Gordon—Dirac equations

@% - M=~ go¥, 2)
(- O+ mA)p =g ¥

although certain “special” global solutions are known in
three space dimensions.? These special solutions are a
consequence of one of the identities we give in Sec. 3.

For those wave equations for which an adequate theory
exists, certain explicit ¢ priori estimates have played
a central role, *1? Mathematicians collectively call
them “energy estimates” although only one of them
represents the physical energy. Many of them are due
to Morawetz. ® Some of them are a direct consequence
of the conformal invariance of the equations and
Noether’s Theorem. 1% Indeed, if an equation is given by
a Lagrangian / and if / is invariant under a one-param-
eter family of transformations, the solutions of the
equation satisfy a conservation law, The infinitesimal
generator //f of the family of transformations can be
used directly with the equation to write the conservation

a)Research supported in part by NSF grants MCS 77-01340 and
MCS 75-08827,
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law. An exposition of these ideas, appropriate for the
present context, may be found in Ref, 7,

It is well known that the M—D and the K—G—D sys-
tems possess a Lagrangian formulation and, if the
mass is zero, are invariant under the 15-dimensional
conformal group .+ This fact is (indirectly) re-
proved in this paper. The multipliers // depend linearly
on the ¢ and A" (or ¥ and ¢) and their first derivatives.
Thus there are 15 independent conservation laws, one
for each generator of (. From the four translations
come the energy and momenta and from the six Lorentz
transformations come the angular momenta in space—
time. The other five generators of (, the dilation and
four inversions, provide five more conservation laws,
They were explicitly calculated” for the case of the non-
linear Klein—Gordon equation

typ— A+ miu+ Fu)=0

and were applied to the existence and scattering theory
of solutions,

The purpose of this paper is to explicitly write the
conservation laws for the classical M—D and K—G—D
equations, in the hope that they can be similarly applied
to the mathematical theory,

What makes our calculations nontrivial is the form in
which the conservation laws are to be written, The
usual form in tensor notation'® is not suitable for our
purposes because the algebraic signs of the various
terms must be made explicit, For the Cauchy problem
the data are prescribed at a fixed time, while in scat-
tering problems the data at times + = and — « are
studied, Thus we separate the time from the space
variables, The resulting identities are written in terms
of the Cauchy data at fixed times. The inversional
identities are quite complicated; so far as we know,
this is the first time they have been explicitly written
in such a form.,

In Sec. 2 we list the notational conventions and then
briefly discuss the existence question, The conserva-
tion laws for the K—G—D and M—D equations are
derived in Secs. 3 and 4, respectively. For each of
these systems we exhibit two additional conservation
laws, giving a total of 17, We also derive some new
bounds which must be satisfied by any finite-energy
solution, Of course, for the M—D equations we must
also append a gauge condition, In Sec. 4 we first give
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the results in the Lorentz gauge 24“/ax* =0 and then

in the Coulomb {(or radiation) gauge V+-A=0, The latter
is better suited to our purposes, because the major
terms in the energy density are positive,

The actual calculations, although elementary, are
prohibitively lengthy and therefore some of the deriva-
tions will only be briefly sketched.

We have also carried out this program for the Yang—
Mills equations in Minkowski space, and can draw some
conclusions about the asymptotic behavior of classical
gauge fields, The details will appear elsewhere,

2. EXPLICIT FORM OF THE EQUATIONS AND
NOTATION

The Dirac spinor $=P{x,!) (xcIR®) is a function on
space—time into spin space, a complex four-dimension-
al space, ' denotes the conjugate transpose of ¢, and ¢
is defined by ¥=1¢",%, where :°=[{ %] is a 4 x4 matrix,
(I here is the 2 X2 identity matrix). The A* {u
=0,1,2,3) are real-valued electromagnetic potentials
defined on IR?XIR, In standard notation! the Dirac
matrices y* (1=0,1,2,3) are given by

&
e [0 °] (k=1,2,3),

-0of 0

where the o*’s are the Pauli matrices

. o 1 . [0 ~—i s [t o
0‘[1 of T i o TT o -1

Thus (9)* =92, (A)*=-1% (£=1,2,3) and +*,* + %"
=2g*I, where g%=+1, g*=-1(¢=1,2,3), g =0
for u#v,

The M—D equations have the form (1), where

3
A :VOAD_’?—:/ 7'kAks

i =i? Ly %_‘Wk_a_
’ ot pm’ x*?
where x* = (¢, x!, ¥, x%) denote the physical variables,
and x* =g""x, (summation on »), In order to write the
Dirac operator in symmetric hyperbolic form, we in-
troduce the matrices

8==1" a=1H" (k=1,2,3).

[These are not the same «@,, 8as used in Ref. 1]. Then
we have af=a,, B*=-8, oi=1, B8 =-1, 0,8+ Ba,=0,
oot oym,=0, R,

The M—D equations can then be written in the
Lorentz gauge as

el . .
zp,:kzak—a)—;%+MB(/)—ng°z,b-zngA"akzp, (3a)
A} —AA=gyty, {3b)
A’;t_ AAk:_gZpTakw (k:192s3)’ (3(.‘,)
dA? DA*
w0

Here A denotes the Laplacian 3,(3/9x%)?, and all sums
here and throughout the paper will be taken over the in-
dices 1,2, 3 unless otherwise specified. We also write
A= (Al A% AY,
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We now consider the effect of a gauge transformation,
Let (, A%, A) be a solution of the M—D equations (3) in
the Lorentz gauge. Let ® =®(x,{) be a sufficiently
smooth real-valued function, The change of variables
p=explig®)y,
A =AY— @, @)
Ak:Akl+¢xk (k:1,2,3)

converts the M—D equations to the system

oy’ o’ . . g
~:—t :? aka—;’ﬁk + MBY — igAdryr zngA” a,

. . 0

Af- 84" + (a2 - 2) =g |7, (5)
’ : a —

A’:t‘ AA® +5x*k(‘?ct' A¢)=—gw'*ak¢’ (k=1,2,3)

with gauge condition

aAY 3 AY
vy

=i " Bx—k_¢'t+A¢:0'

Suppose we want the “primed” equations to be in the
Coulomb (or radiation) gauge:

JAY
L =0

Then ® should be chosen so that

3AY
at

<b”-— Aq):

which, by the second of Egs. (4), is the same as
requiring
3 A"
- A =7 (6)
With this choice of ¢, the M—D equations in the Cou-
lomb gauge take the form

oY’ oy’ . . '
—82!)2-:2 akgzwk—wLMBw'-—ngo'W—ngAk a?,
k &
— AAO':g d)' 2,
| i , ™

A AAk'+.a_Ai__ ot ’ —

tt ataxk “‘—gd) akw (k“lgzys),

2A¥
Y oa =0

In a similar way the K—G—D equations can be put into
the form
Ya, 24
Py = Lo TR + (M- gd)BY, (8a)
Gpp~ A+ mz¢ =g, (8b)
where, of course, ¢ is a real-valued (scalar) function.

We conclude this section with some brief comments
on the existence of solutions, First we must introduce
the norms

lfeell, = (f |u ) | 2ax)t/e,

lfull . = ess sup|u(x)]|.

1<p <o,

The integration is taken over all space xcIR® here as
elsewhere (unless otherwise specified), A pair of
standard inequalities, associated with the name of
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Sobolev, are
[z}l < const || v,
and??
lledl] < const (| V2ully + lleell ).

Denote by H" the usual Sobolev space of functions which
are square-integrable over IR? together with their
derivatives up to order n, It is a Hilbert space with the
norm
ledidn= 23 [1D%ulI3,
lal=n

where D¢ is a derivative of order |al,

Consider the Cauchy (initial-value) problem for the
K—G—D equations (8). Following a procedure!”? which
is by now very well known, we can solve (8) by iteration,
locally in time, The basic space is the space in which ¢
has (spinor) values in H”, ¢ has (real) values in H", and
b, has (real) values in H™! at each time, where n> 2,
The basic nonlinear mapping takes (¥, ¢, ¢,) into
(¢4, 0, ). By the Sobolev inequality, this mapping is
locally Lipschitz on this space, It follows!™? that the
usual iterates (well known to mathematicians and
physicists alike) converge in nontrivial time interval
to a solution of (8), Because 7 can be taken arbitrarily
large, the solutions of (8) are smooth (have square-
integrable derivatives of all orders), Thus we are
dealing with bona fide solutions of (8), The only trouble
is the extension of the solutions to all times, This is a

problem of great difficulty which has not yet been solved.

To solve it, it would be sufficient toc show that the
solutions of (8) do not blow up (become unbounded) in
the norm of the above space at finite times, Certain
weaker a priori estimates on solutions would also be
sufficient, Below we prove an estimate (13), which
appears to be too weak for this purpose, but only slight-
ly so, For the M—D equations, (3) or (7), exactly the
same local existence theorem is valid,!® and the general
remarks on the global question remain applicable,

3. CONSERVATION LAWS FOR THE K-G-D
EQUATIONS

The simplest conservation law results from multiply-
ing (8a) by ¥' and taking the real part. Thus

0 0
5[2!)]2:?5?@01@.

If this identity is integrated over all space at a fixed
time, we obtain the conservation of chaige

J 9P dx= const. (9a)

If, on the other hand, we integrate it over the interior
of a light cone and use the divergence theorem, we
obtain

fxzp*(zﬁjgf ak>d)dS <2 [|9|?dx (9b)

By (9a) the right side is a constant, Here I is the identi-
ty matrix, = i{x|, dS is the usual three-dimensional
surface measure on K, and K is any characteristic light
cone |x|=|t| +const, The plus sign is to be used on
forward light cones and the minus sign on backward
light cones, Notice that the 4x4 matrix I+ Jx*/7)a,

has eigenvalues 2, 2, 0, 0, Hence (9b) is an estimate on
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half of the components of ¥ (those in the 2-eigenspace)
on light cones,

Another quadratic invariant was discovered in Ref, 5.
In the representation of the ozk’s, 3 given in Sec. 2 it
takes the form

STy = 942+ |2y + 4| *] dx = const, (10)

If initially the constant in (10) vanishes, then @r(x, H=0
for all / and global existence for such initial conditions
follows easily from this, >

To derive energy conservation, we multiply (8b) by
¢, and then multiply (8a) by 2¢% on the left and take the
imaginary part of the result, Adding these two expres-
sions, we obtain the identity

9 0
576 ) =Dz Imy oyt - &1l (11)
where the energy density is given by

e, 8)=ImL " ayda= (M- g0) P - 265 +[ Vo [* +m??).
This gives the conservation of energy
]0 (¢, &) dx = const. 12)

Even though the energy density is not positive or
negative, we can still obtain an estimate which could
prove useful in the global existence question, It is

[(@3+{vo |2+ mPe¥)dx = const{ [ |ve| av + 1}1/2 (13)

with a constant independent of time, Inequality (13) is
derived by estimating each of the first three terms in
(12) separately, The mass term is bounded because of
(9a), By (9a) and the Schwarz inequality,

{Im?f;b‘fakka dx | < constil Villl,.

The third term in (12) is estimated using the H6lder
inequality and then the Sobolev inequality as

L[ ogpax | <ol 11018722137

‘iconst|!V<f>(f)l|z||V¢(l)ll%/21|¢(0)|lg/z.
The resulting estimate implies (13),

To derive momentum conservation, we multiply (8a)
by #L;, take the imaginary part, and then multiply (8b)
by ¢,s. The following identity results:

2 13 .2
B, ¢)=35 W(fb%— |vo|*= me?) (14)

d
J‘Z‘ _ax—k ((bxj(brk - Imwrakd)x/)a

where the “momentum density” F;(, ¢) is defined by
B, @) =Imlyd + d,b (1=1,2,3). (15)
Thus the conserved momenta are
P, d)dx =const (j=1,2,3), (16)

Identities (11) and (14) are the basic expressions from
which the other conservation laws follow, We leave out
their derivations, all of which are elementary but
tedious. The angulay momenia are

[I¥le, p)— tB W, p)ldx=const (j=1,2,3)  (7)
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and

SI5*P,, ) - x’B#, ¢) + 3 Imy'a,a,¢] dx
(= +5). (18)

This completes the list of the ten identities following
from the Lorentz invariance of the K—G—D equations
[identities (12), (16), (17), (18)].

The following “dilational” and “inversional” identities
are valid under the assumption that M=m=0,

=const

The dilational identity takes the form
Smrgl + ¢,(6 +7¢,) - te(¥, $)] dx = const, (19)

where 7=|x], It follows essentially by multiplying
(14) by ¥’ and summing on j.

The first inversional identity is
JI02+ 8y e, 6) - 2tr tmyly - 2t,(p +76,) + ¢*]dx
= const, (20)

This follows by multiplying (11) by 7% + tz, multiplying
(14) by - 2tx’, and summing, It is this inversional
identity that has proven to be quite useful in analogous
situations, 7!

Finally, the three remaining inversional identities
have the form

S [ txle(d, $) + 212+ 2672 - ) By(y, ) + ',

+ DARTE W, 9) + %Immgxmw'ama,w]dx
(i=1,2,3). (21)
This follows from repeated use of (11) and (14).

4. CONSERVATION LAWS FOR THE M-D
EQUATIONS

The charge is
[14|?dx =const, (22)

exactly as before, The cone estimate is also the same,
When M =0, we have an additional quadratic invariant
integral, The 4 X4 symmetric matrix

N I
c= [, 0]
commutes with each a, as given in Sec. 2, Thus we find

J#tCydx = const, (23)
Subtracting (22) and (23), we find

=const

Jot - Cypdx= [{|wy— |+ |y — 0] Taix

to be conserved as well. In particular, if ¢;{,#) = Pslx, 1)
and Y, (v, t)=¢,(x, ) at a specific time, then the same is
valid at any other time so long as the solution exists,
provided M =0,

The energy identity, derived similarly as in Sec. 3,
takes the form

Sem A =m D a,,w,)+2—,(Aw,-mf;A:,>,

(24)
where the energy density e (i, A) is defined by
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e, A)=Im D ¥ oy~ M- gA|9|2 - g 2 A% oy

+12[(aa—‘f)—>2+ | vA?| ] T‘:(BA> + A”I]
(25)
Enevgy conservation is therefore expressed by
Je(®, A)dx = const. (26)

Note that the last two terms in (25) have opposite signs.
This shows clearly that the Lorentz gauge is not well
suited to obtaining a priori estimates.

The other fundamental identity is obtained essentially
by multiplying (3b) by A, (3¢) by A%, and (3a) by ¢l
and then taking the imaginary part of this last expres-
sion, There results the identity

R G

3 &
- ImE-a;-,;(zl)*a, Det) - E—r(Aglext - ZAZIA,“‘,), 27
b T 08X r

d
‘E;B (d)’ A) =

where the “momentum density” P (¥, A) is given by
B, A)=Tmily- AJAL + 245 (1=1,2,3).  (28)

Hence the conserved momenta are given by
fP,(zjz,A) dx=const (j=1,2,3).

Using (24) and (27), we can next establish the con-
servation of angulay momenta

Slxte(¥,A) - tP(y, A) + A'A} - A’AY]dx =const  (j=1,2,3)

(29)
and
SIx*B (¥, A) - B(), A) - A*AL+ ATAY+ SImyta,a, ¢ dx
=const (j#k). (30)

The remaining identities are valid under the hypothe-
sis that M =0,

The dilational identity (with = |x1)
Slmryly - te(p, A) - AYA® +7AY) + kEA’f(A’“ +7AR]dx (31)

=const

follows essentially from multiplying (27) by x’ and sum-
ming onj,

The first inversional identity has the form
J{o*+ By e (v, A) + 2tr Imyty,
+ 2 AYA" +7AT) - TA RA + A%
+ 2Zk?x“(A°A’: A*Ag) 3(4%2 +?(A”)2}dx =const,

32)

This results from the fairly obvious use of (24) and (27).
The last two terms in (32) appear via use of the gauge
condition,

The last three inversional identities are derived from
repeated use of (27), with multipliers apparent from
their explicit form:
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J{= e, AY + 312 + 2 - ¥ P(y, A)

+222Mx B, (4, A) + 3 Imit o, + AmAL - AVAT] (33)

m# j
+xf<— AAY +?A”A’§>— HAAL - ATAY) + A%Al}dx

=const (7=1,2,3).

We are not aware of any physical interpretation of
33).

Finally, we consider the gauge transformation (4)
under the choice (6) of . Thus our equations take the
form (7) in the Coulomb gauge, We give below the
analog of identities (26), (31), (32) in the “primed”
variables, These new invariants can be obtained in two
ways: (i) They can be derived directly from Egs. (7)
as above, or (ii) they can be rewritten from (26), (31),
(32), using (4) and (6). In these calculations we use the
relation

(flvAUIIde:ngﬂlldvylyzdx,

which follows from the second of Egs. (7). We obtain in
this manner the following:
: }dx

Energy consevvation:

2\2
%fIVAO'Izdx +é?f[(a—£—’) + |va¥

+f (MMD' - Im? @b’*a'klpék)dx

+g§jAk'w'Takzp'dx Efe'(dﬂ,A')dxzconst. (264)

Dilational identity (M=0):

f[ie'(w’,A') + Tmr ety +EA’;'(A” +VA§')] dx = const, (317)
R

Inversional identity (M =0):
f [(rz + ) er(yr, ALY - 2§x’“A°'A’§' + 2t Imr gty
+ 205 AV (AY + ARy +3(AR - (A’*’)z] dx = const,
k R

Notice that the first two terms in (26’) now have the
same sign, It follows just as in Sec. 3 that for a solu-
tion ¢, A%, A7 of the M=D equations (7) in the Coulomb
gauge, we have the estimate

ITAY ()12 +§E|A:’ O3+l vA4¥ <t)i1%]

< const (1 +{[vy(t),).
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The Cauchy problem in general relativity. lll. On locally
imbedding a family of null hypersurfaces
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This paper is concerned with the problem of locally imbedding a null hypersurface in a Riemannian
manifold. More precisely, on a one-parameter family of null hypersurfaces, rigged by an arbitrary null
vector field, in a four-dimensional space-time manifold, a particular symmetric affine connection is used
to derive the corresponding generalized Gauss—Codazzi equations. In addition, expressions are obtained
for the projections of the Ricci tensor, which are relevant to the characteristic initial-value problem of

general relativity.

INTRODUCTION

There is a generally satisfactory and well developed the-
ory for the problem of locally imbedding hypersurfaces in a
Riemannian space, when such hypersurfaces are themselves
Riemannian spaces.' [Following Schouten, we use the term
“Riemannian space” to denote a space endowed with a non-
degenerate metric tensor, and if in addition, the metric is
positive (negative) definite, the space is called ordinary.]
However, the same is not true when the imbedded hypersur-
faces are characteristic (null, isotropic) hypersurfaces.

From an intrinsic point of view, an n-dimensional null
manifold is one which has defined on it a degenerate metric
of rank n— 1. Due to this degeneracy, the metric of such a
manifold does not induce any affine structure on the mani-
fold, in contradistinction to the case of Riemannian spaces.
In order to overcome this problem, one is forced to choose, in
a more or less arbitrary way, a linear connection which will
depend, in general, upon quantities other than the metric
alone. There are many such choices, and in the case where a
null manifold is considered as a hypersurface in a Rieman-
nian space, the quantities may be extrinsic to the hypersur-
face. The choice of connection is the crucial step in the subse-
quent imbedding theory.

The main objects of this paper are two-fold: After some
preliminaries in Secs. 1 and 2, we shall study some aspects of
the problem of locally imbedding a one-parameter family of
rigged null hypersurfaces, 7, in a four-dimensional space-
time manifold V,. We shall do this by, in Sec. 3, making a
particular choice of linear connection for #V; and then, in
Sec. 4, calculating the generalized Gauss—Codazzi equa-
tions. These may be considered as necessary conditions for
PN,, with our choice of connection, to be imbedded in V., or
simply as expressions for various projections into *, of the
Riemann tensor of V.. Previous attempts at this problem
have been unsatisfactory for various reasons. Either the
choice of connection has been such that it depends on quanti-
ties extrinsic to the hypersurfaces,?*** in which case the geo-
metrical interpretation of the resulting Gauss—Codazzi
equations has been unclear, or else it has been such that the
Gauss—Codazzi equations can only be derived for a restrict-
ed class of null hypersurfaces.** With our choice, neither of
these problems arises.
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In Sec. 5, we pursue our second objective, which is to
complete the decomposition of the Riemann tensor of V, into
components transverse and normal to #N,, and then apply
the same procedure to the Ricci tensor of V,. The resulting
expressions are independent of the metric structure of ¥,
and these results will thus enable us, in a subsequent paper,
to study the local characteristic initial-value problem in gen-
eral relativity from a geometrical viewpoint. (This paper is,
in fact, one in an ongoing series relating to a larger program
concerned with the Cauchy problem in general relativity—
Papers I and Il are Refs. 7 and 8, respectively.)

In what follows, we shall adopt, in the main, the con-
ventions and notation of Schouten.’ In particular, an X,, de-
notes an n-dimensional bare manifold; an L, is an X, with a
linear connection; in an 4, the connection is symmetric, and
ina V,, the connection is, in addition, the metric connection.
Greek indices run from O to n, and Latin indices from 1 to n,
where, after Sec. 1, we take n=4. For our purposes, a V, will
refer specifically to a Riemannian manifold, signature
(+ — — —). Main differences and additions to Schouten’s
notation are as follows: partial derivatives are denoted by a
comma; covariant derivatives in L,(4,,V,,) by a semicolon
andinL, ,(4,_,)byacolon;an ¥, denotes a characteristic
hypersurface, signature (0— —) in ¥,, and a one-parameter
family of X, _’s(L,,_’s,4,,_,’s) foliating an X,(L,.4,,V,)
will be denoted by PX,, | (°L, ,’4,_)).

Finally, we re-emphasize that all our considerations are

purely local; we make no attempt to study the global prob-
lems of the geometry of null hypersurfaces in V..

1. GEOMETRIC PRELIMINARIES
A.Arigged”X, ,inanJX,

In this subsection we shall give a brief résumé of the
results concerning a rigged X, , in X,,. Further details may
be found in Schouten.”

An X, _,, with coordinates 'x% in an X, with coordi-
nates x* may be given either by its null form C "(x*)=0
(where n takes a single value), or by its parametric form
x*=B*('x“). An X, _, given by its null form induces a one-
parameter family °X, _, of X, ’sin X,, given by
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C"(x%)=p. (1LY
The parametric equations of °X,,_, are
xa:Ba(fxgp)’p)’ (1.2)

where 'x{, , are the coordinates of a particular member
#X,_,0fPX, _ . The one-parameter family given by (1.1)
foliates X ; that is, any point in X, belongs to precisely one
member of 7X,, _,.

The connecting quantities B $, where
def

B, =8B%, (1.3)

are used as projection operators. For example if w,, is a co-
def

variant vector of X, then B%w, = 'w, are the components

of the projection of w, into X,, _ |, in the coordinates of

’X, _ 1. Similarly, if b* is a contravariant vector field in
def
?X, _,, then B'v® = "v™ are the components of b, consid-

ered as a vector of X, in the coordinates of X,

To make our notation absolutely consistent, we should
refer to object fields @ (indices suppressed) in °X,, _ , as ei-
ther 7@, which would denote the one-parameter family of
@’s defined throughout X, or as @, which would denote @
defined only on one particular ”X, _ ;. However, since it will
always be made clear from the text which we mean, we shall
omit this superscript, for ease of presentation.

In order to project contravariant vector fields of X, into
?X, _,, or to form a vector field in X, corresponding to a
covariant vector field in7X, |, we must first rig7X,, _ ;.
This means that we must define a direction at each point of
X, which does not lie in the member of °X,, _ | through that
point. In practice, this is done by defining a contravariant
vector field C ¢ in X,,, which nowhere lies in 2X, . Sucha

vector field is said to rig, or transvect °X,, _ ;. The covariant
def
normal to?X, _,isgivenby C,, = C”" . In general, we

def

have C2C" = A (x¥)5£0. If we define C¢ = A"'C?, then

C 7 is also a rigging field, in the direction of C 2, which satis-
fies the so-called first normalizing condition,
cicr=1. (1.4)

By virtue of the rigging field C ¢, we may form the con-
necting quantities (projection operators) B g. The projection
operators satisfy

BIC:=B.C%=0, BIB§=165 (L5
We define further the projection operators
def def
B =ByB7, Cj=CpChL (1.6)

Under a transformation
C%*—>0C%, Cl—0'Cl lo=0(x%)], which preserves (‘1.4),
the projection operators B, B g, B 7, and Cg are invariant.

We have the fundamental relationship
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B3+Cg=585, (1.7)
and using (1.7), we may write any contravariant vector v* of
X, in the form

V=B P+ CHP~

def
where 'v* = B J1P is thePX,,_ |, or transverse part of v” and

""v® is the component of v* in the direction of the rigging, or
normal part. Similar remarks apply to covariant vectors and
higher order tensors in X,,. For example, any symmetric con-
travariant tensor T ° of order 2 may be written in the form

T =BT +2B°CPT" + CHET™, (1.8)

where B ‘;{5’ is shorthand for B ¢B%, etc. Then
def

‘T = BT is the transverse—transverse (or t-t) part of

T %, B{*C P T is the transverse-normal (or t-n) part, and
C ‘;g T 7 is the normal-normal (or n—n) part. Any tensor
written in the form (1.8) is said to be decomposed into its
transverse and normal parts, or projections, relative to

X,

n—1°

B. Lie derivatives in a rigged °X, _ 77

The Lie derivative of a tensor field defined on ?X, _ |
w.r.1. a vector field v® in X, is not, a priori, well defined.
However, by means of the projection operators B and B¢,
we may form the tensor field in X,, corresponding to the
given tensor field in 7X, _ ,. We may take the Lie derivative
of the former in the usual way. We then define the Lie deriva-
tive of a tensor field in”X,, _, as the componentsin?X, _,of
the Lie derivative of the corresponding tensor field in X,
That is, for any tensor field 'T; in?X, _,, and any contra-
variant vector field v® in X, we define £' 7% by

def

£,T7% = By e BT (1.9)

Should v itself lie in 72X, _, i.e., if v*=B %”, then the
Lie derivative of ‘T “}; will be the same whether computed by
the definition (1.9) or by taking the Lie derivative in the
usual way, as is clearly possible in this case.

C.Covariantderivativesinarigged”., ,inanl

Suppose that we have anL,,_, in L, with connections
'T'j. and I'§, respectively. Let €': x*=x%(s) be some arbi-
trary curve, parametrized by s, within L _,, for some
p=p.. For any tensor field T of L,,, the absolute derivative
along % is given, using (1.3), by

DTy o dx? d'x*,,
= T%, — =T% Bl ———=. 1.10)
Ds B s “aB ds (
We now define the covariant derivative of 7%z w.r.t. "I by
@ def "X¢
DT% ey T (1.11)
Ds T ds
Since ¥ and p, are arbitrary, (1.10) and (1.11) give
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def

Suppose that we have some arbitrary vector field
v* = BJvinL,whichliesin”L, . From (1.12) we obtain

(1.12)

def

VB +BUS ABYT Y = (BEV) 4 %BPvBY.

Since v’ is arbitrary, the above equation defines B §, by
def

By =B5 ~BIT+BIly,

Ci

(1.13)

We emphasize that the above results are simply definitions,
and entirely independent of the specific choice of connection
inL,or?L,_,.

Let us now suppose that 'I";_and I" 3, are both symmet-
ric, thatis,?L,_, and L, are an”4,_, and 4,, respectively.
Then, remembering (1.3), we see that

By =B, (1.14)

Covariantly differentiating (1.12), with 'v* substituted for
T*; gives
def

VB + 2BVt BV = BZZ’U(Z;75+'U“; T
Alternating over ¢ and d, and remembering (1.14) we obtain

b def s
VB a1 +3BY Ry = B dgeﬁRéyEmve'
where R, 5 is the Riemann tensor of 4, and 'R, that of
P4, _,. Since 'v” is arbitrary, we may use the last equation as
the definition of B, ,, giving

def

B g:[cd] = %B %gRayﬁa—%B Z“Rdcb “ (1-15)

2. INDUCED METRIC STRUCTURE IN”N;

In a ¥V, let an PX; be given by the equation ¢ (x*)=p,
where ¢ satisfies g’ ,é ,=0, g,;being the metric tensor of
V,. Then?X, is a one-parameter family of null hypersurfaces
foliating V. These hypersurfaces are not in themselves Rie-
mannian spaces, since, as we shall demonstrate shortly, each
member of X, has induced upon it a degenerate metric ten-
sor of rank 2, signature (0— —), which makes X, an *N,.

The covariant normal to ”N, is ¢ , and k * « g*%¢ 4 is
any tangent vector field to the congruence of null geodesics
ruling #NV,, Using k , as a basis vector in V,, we may complete
the basis by introducing the real null vector n_, and the com-
plex null vector m,, defined by

8up=2k Mgy —2m Mg, 2.1

kn®=—m,m*=1, 2.2)
all other scalar products zero.

The null tetrad (k,,,n,,m,,m,) is not uniquely defined
by (2.1) and (2.2). The most general transformations of the
tetrad preserving the direction of k ¢ are the so-called null
rotations about & “, given by

k*—Ak®, (2.3a)
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n°—>A4 “n®— Dm®— Din®+ ADDk °, (2.3b)
m®—e'E(m*—ADk ®), (2.3c)

where A4 and E are real, 4> 0, and D a complex function of

x“.

The necessary and sufficient condition that any null
vector ¢°, say, lies in ”N;, is that ¢” o k “¢==¢k,=0. Hence
itis clear from (2.2) that n” transvects ?V,. Furthermore, it is
easy to show that (2.3) allows n“ to be transformed into any
null vector field with the same time sense as n“, and not
parallel to k . Hence n” is the most general null vector field
transvecting ” V. Since k, « ¢ , and n® and k,, satisfy the first
normalizing condition (1.4), we may, as described in Sec.
1A, use these vectors to form the projection operators
B,B},B g and C 3. Equations (1.5), (1.6), and (1.7) yield, in
particular,

BB =6} Bik,=Bin"=0, Bg=063—n"kg,
relationships which will be used frequently and without ref-
erence in the remainder of this paper.

If we project the null tetrad spanning V, in its contra-
variant and covariant forms into *N,, we see using (2.2) that
the contravariant and covariant triads

def def

TE = (k*mem®), T = (n,mym,),
respectively, span ?N,. These triads in hypersurface coordi-
nates are given by

def def
?a) =B ZzT?a) = (k°,m°®,m"),
def def
TY = BT = (n,m,m,),

respectively. The scalar products between the triad members
are from (2.2) clearly

kn,=—m‘m,=1, 2.4
all others zero.

The covariant metric tensor of N, induced by virtue of
its imbedding in V,, is given by"

8as=B $8up (2.5)
'8, POssesses a single eigendirection of eigenvalue zero, de-
fined by k ¢, since from (2.1), (2.4), and (2.5) we have

'8ap=—2M My =g,k ¢=0. (2.6)
Equation (2.6) implies that ‘g, is degenerate, with determi-
nant of rank 2. Due to this degeneracy, 'g,, cannot be invert-
ed to give a contravariant metric '*g°® satisfying
*g*g,,=8}. Instead we introduce a substitute contravar-
iant metric given by

'gP=R g~ _2mlm®, Q.7

Hence ‘g*® is simply the projection of g°# into *N,. 'g* and
'8 . Satisfy

8ac 8f 87 ="Cups (2.82)
'g*n,=0, (2.8b)
'8 8pe=0p—k ny. (2.8¢)
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In fact, from an intrinsic point of view, given ‘g , and n, on
PN, (2.8) defines 'g? uniquely.

The tetrad transformations (2.3) induce the following
transformations in the triad vectors:

ke—sAk®, (2.9a)
m—se'E(m®— ADk %), (2.9b)
n,—A*n,—Dm,—Dm,, (2.9¢)
m—e'fm,, (2.9d)

where 4, D, and C are now functions of 'x{,, and p. The
covariant metric 'g,, of 7N, is invariant under (2.9); ‘g*® is
invariant only under the subgroup of (2.9) given by D=0,

3.ANINTRINSIC AFFINE CONNECTION FOR*N;

Ideally, we should like to construct on #N, a symmetric,
metric connection dependent only on quantities intrinsic to
PN;,. Unfortunately, this is, in general, impossible. In particu-
lar, it can be shown that except for a very narrow class of null
manifolds, no linear connection which is both metric and
symmetric can be constructed.” A number of authors have
considered the problem of constructing a connection on an
N, considering variously either the symmetric??**5 or met-
ric® property to be more fundamental. Of these connections,
only two (Refs. 6 and 15) are intrinsic to N,. The point of
view we shall adopt is that it is necessary for the connection
to be intrinsic if it is to be geometrically meaningful. To this
end, we shall choose the intrinsic, symmetric, nonmetric
connection first introduced by Dautcourt's; our motivation
being simply that it turns out, with this choice, that we can
derive a set of generalized Gauss—Codazzi equations whose
geometrical interpretation is clear, and which also have use-
ful physical applications in general relativity.

Dautcourt’s connection is given by"
def

T3 = 238" (hect Beep™ 8hed K Nip ey G.H

From its definition, it is clear that 'I"{, is not invariant
under (2.9), although it is invariant under the subgroup
A =1, D = 0. This is unfortunate and differs from the case
of the metric connection in ¥, which 1s independent of the
related transformations (2.3). However, it is the case, from
an intrinsic point of view, given ‘g,, and n,, that 'I"§_is
uniquely determined [by (2.4), (2.6), and (2.8)]. This is as
much as we can really hope for; in a V;, the metric connec-
tion is determined by the six independent functions con-
tained in the metric of V5. In an N, the metric contains only
three independent functions, and thus one might expect that
more information would be required to determine a connec-
tion. This is indeed the case; giving n, is equivalent to speci-
fying another three independent functions.

By projecting ‘I into V., one can readily show, using
(2.5) and (2.7), that

. . B
0. =BNCs +BIB, + BTk “ng,,,

abe

(3.2)

where I' 5, is the metric connection of V.. From (3.2), we see
that the connection 'I"§. of N, in V, is determined by the
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metric of V,, and the rigging field »*. For the rest of the
paper, we shall assume that a rigged N, in V, is in addition
an 4, with connection given by (3.2).

At this stage it is convenient to define certain tensor
fields induced in #V, by virtue of its imbedding in ¥, and its
rigging. We define (cf. Schouten?):

def

Ly = —BYn,, | (3.32)
def
[=—Bln", |, (3.3b)
def
hl = —Blk, 3.3¢0)
def
hep = h(cb) = - BZEkB;y (3.3d)
Substituting (3.3a) in (3.2) gives
T3 =ByTs, + BBy —k Ly, (34

The quantities defined by (3.3) are apparently implicit-
ly dependent on I" 5, This is undesirable, since for example,
(3.4) does not give ‘s, explicitly in terms of I;,. However,
remembering k, o« ¢ ,, and writing

ko=¢e¢, , (3.5)

where p is some arbitrary scalar function, we may show in a
straightforward manner using (1.9), (2.1), (2.2), (2.5), (2.7),
and (3.5), that the definitions (3.3) lead to

lo= — 38,80+ P Moy + Nicpy (3.6a)
l5="g"l., (3.6b)
h'= —3g°g.— kL k" (3.6c)
hep =8t = — 5818 (3.6d)

We see that (3.6) are independent of I and 'I"§,. In par-
ticular, substituting (3.6a) in (3.4) gives us an expression for
"Iy explicitly in terms of I' . (This result was first due to
Dautcourt’®.)

In contrast to the case of an ordinary ¥, in V,', we see
that 4, is now intrinsic to N, and [, (equivalently £',g.,)
now defines the extrinsic curvature of NV;. We shall refer to
1, therefore, and not 4, as the second fundamental form of
’N,.

The Appendix contains some relations which are a di-
rect consequence of the definition of 'I"§_in (3.1), and the
definitions (3.3), and which are used in some of the ensuing
calculations in Secs. 4 and 5.

4. THE GAUSS-CODAZZI EQUATIONS

Suppose we are given a rigged ”N; in V,, as described in
Sec.3. The imbedding of NV, in ¥, is determined by the func-
tions B?, the covariant normal ¢ , (or equivalently k) and
the rigging field n°. Using (1.13) and (3.3d), we may rewrite
(34)as

def
Bgzc = Bll:,c_‘—B . 2(:_3%3‘/ gy:nahbc+Bcelk el(bc)' (413)

e
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Similarly, we may rewrite (3.3b) and (3.3d), using (1.12), as

def
n® . =n* BI=—B2l—n°l k" 4.1b)
def
B, = Bk, =—h, (4.1c)

We may formally regard Eq. (4.1) as differential equations
for the quantities B¢, n%, and ., (cf. Schouten for the im-
beddingofand, ;inE,*andaV,_,inR,"), however, the
significance of (4.1) in the present case is that the integrabi-
lity conditions for these equations lead to relationships be-

tween quantities of ?V; and V..

The integrability conditions for (4.1a) are, using (1.15),

def
& 1
B g:[cd] = %B deBKSyBa'—iB g'Rdcbe

=1y 1))+ Bkl 10).ay

where K, 5 is the Riemann tensor of V., and all symmetri-
zations are to be performed before antisymmetrizations. Us-
ing (4.1) in the above equation, we obtain

def
5
2B g:[cd} =B deraypa“B g’Rdcbe

=21y (e.qy—Po 1 da 1K)
+2B (kL 1oray—Po1day’ — L 1ofar)s

4.2)

where, from (1.12) and (3.3c) we have used the fact that
def

k®y = BSk™ = —B%h,".

Transvecting (4.2) with B? gives
def

2B ZB(I::[cd] = BﬁﬁféKayB“—’Rdcb“
=2k dl(b[c):d]—Zhb[cId)a_ZI(b [c)hd]a'

4.3)

Ostensibly, we could obtain another set of integrability con-
ditions for (4.1a) by transvecting (4.2) with k.. However, we
may show that

kB l(::[cd 1= 'gebka ;Bg[cd ) —'gak e:[cd]
and hence (4.3) are the only independent equations in (4.2).

We may also obtain the integrability conditions for (4.1b)
and (4.1c) but since we may show that

B i”a:[cd] =— 'gae”/B{,B Z:[cd]—lgaene:[cd]’
kana:[cd 1= _nek E:[cd ] _neB ng[cd ]kfr
(B gkﬁz[c)d 1= ‘“kﬁB g:[cd]*hb [cId ]ek i
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we see that the integrability conditions for (4.1b) and (4.1c)
may be derived from (4.3). That is, (4.3) is the only indepen-
dent set of integrability conditions for (4.1).

Equation (4.3) gives the totally transverse projection of
K, ;" relative to PV,. Let us now consider this tensor in its

completely covariant form. There are precisely three inde-

pendent projections of this tensor, namely the totally trans-
verse (t-t—t-t) projection, B 35eK 5,5, the three times trans-
verse, once normal (t—t-t-n) projection, B 34K, 5,n% and
the twice transverse, twice normal (n—t-t—n) projection,
BYK 5yﬁan5n". It is straightforward to show, using (2.5) and

(1.8), that
B gzg:Kﬁ‘yﬁa = (%Igae - nalgbekf)B Z’ZﬁleKﬁyBa’

B Sngé‘Vﬁana = neB 22"5;'K6}/Ba'
Hence both the (t-t-t—t) and (t—t-t-n) projections are deter-
mined from (4.3), and using this latter equation we obtain,
using (2.6), (2.8¢), (3.6), (A1), (A2), and (A3),
B 3r£:K5yﬂa = 'gae'Rdcbe - 2hb [cld la
=2 1oharat 2y jcaia (4.4a)
B ZZEKéana =2 pra) + 2 1oark . (4.4b)

In analogy with the case of a ¥, in V!, we shall refer to
(4.4a) as the generalized equation of Gauss, and (4.4b) as the
generalized equation of Codazzi.

5. DECOMPOSITION OF THE RIEMANN AND
RICCI TENSORS OF V,

In the last section, we saw that two of the three indepen-
dent projections of K, 5, are given by the generalized
Gauss~Codazzi equations (4.4). With (3.6), (4.4) gives these
projections in terms of quantities that are independent of the
metric structure of ¥,. An expression with the same property
for the remaining independent (n-t-t-n) projection is ob-
tained by taking the Lie derivative w.r.t. n* of (3.3a). This
gives immediately

£nlcb= —B Z"bﬁ£nnﬁ;}’_ nB;‘)’B :'xl;s£rrB gg
Expanding the R.H.S. of the above, using (1.9), (1.12), (3.3),
(3.5), (3.6), and (4.1a) yields, eventually,

B ffK’Syﬁan‘sn" =& oy H Loy +(£,10).00

=k E L p P Enyy (5.1)
From (1.8}, (2.2), and (2.7) we may write
def

Ky = 8K 5,30 ='8"B [ Kyt 2k °B K siy00n™
The three independent projections of K, ; are then given by

BK 5="8"B i K syt 2k “B LD K sy

BYK "= —'g'BYPK s sun®—k ‘B1PK sypallN%

K, gn'n”="8B K5, 5.n°n%,

the (t-t), (t-n), and (n—n) components, respectively. Using
(2.8¢c), (3.6), (4.4), (5.1), (A1), (A2), and (A3) in the above,
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we obtain
B ZI’?K vB
= IR(cb y+ 28,0, —2(k I c):b)+ 4’gefhe(clb o 'gefhe/cb

—& efie/'cb ~2k°I, ey y— 20k eib/k I+ Ziejk k jicb

+ zlgefhf(c"b yet+ 3(£xn) 5y~ 3£ 500, (5.2a)

def def

where 'R, = 'R_,°, l~cb = lipy:

BIK, "
= — kBl — 215y + LT — 205kl — Lkn,

37e e e e
- Elc £kne —k (£nn(e):c) + k £nnel(cf)kf~ k p,(e£nnc);

(5.2b)
K gn'nP = £,1° — 1J1,° — 15k/8,n,+ 2k 1 /E,n,

+ ,gef(£nne):f+ %Ig2f£nne£knf+ ’gefp,e£nnj‘
(5.2¢)

CONCLUSION

Equations (4.4) reveal that the Gauss—Codazzi Equa-
tions in our case are in fact not a great deal more complicated
than their counterparts for a ¥, in V,." It must also be re-
membered that (4.4) holds for an arbitrary choice of null
rigging field n°. The essential feature of the expressions we
have obtained for the projections of the Ricci tensor in (5.2)
is that they are independent of the metric of V,. Although
these expressions are quite complex, especially when written
out fully with the aid of (3.6), in any particular application
one invariably makes a specific choice of %, and this leads to
considerable simplification.

In a subsequent paper, we shall, by suitable choice of n7,
analyze the double null initial-value problem in general rela-
tivity,'” and give a more geometric interpretation than has
yet been possible. We also hope to apply the results of this
paper to a geometrization of the null-timelike initial-value
problem'*'** and eventually to provide a unification of these
two versions of the characteristic initial-value problem in
general relativity.
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APPENDIX
Using (2.2) in the definitions (3.3), we immediately get

hcek e:lcene—_—o’ lcek ‘= —hcene' (Al)

From the form of "I, given by (3.1), some straightforward
calculations lead to the expressions (of which all but the sec-
ond are given in Ref. 15):

Rep=Nicr1 =Ny
ke=—"8h .tk n.k° (A2)
"be:a=2Nph s
8 =28k n,,

Equations (A1) and (A2) lead directly to the following:
k€k =0,
8pe.ck ‘=0, (A3)
Bec:ak “=hea
keo=—"8h,
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A separation of the many-particle kinetic energy into collective and intrinsic components is shown to result
simply from a general form of the Laplace-Beltrami operator. The geometric structure of the
decomposition is thereby clearly exhibited and the intricate computations previously necessary are

eliminated.

1. INTRODUCTION

The very considerable successes of the Bohr—Mottelson
collective model'? have motivated a number of publications
in recent years addressed to the problem of effecting a
change of coordinates on N-particle configuration space R*Y
from Cartesian to collective plus intrinsic coordinates. In
essence, the various authors consider a Lie group G which
acts on R*>" and decompose R*" into orbits of G and a
smooth transversal. The collective coordinates are taken to
be a chart for the generic orbits while the intrinsic variables
are a set of coordinates for the transversal. Thus, Villars**
and Rowe’ took G = SO(3) and obtained microscopic ex-
pressions of the rotational model. The full Bohr—Mottelson
model for rotations and vibrations, given by the choice
G = GL.(3), has been investigated by Zickendraht,* Dzyub-
lik et al.,” Rosensteel,® Gulshani and Rowe,” and Weaver,
Cusson, and Biedenharn."

The major technical problem is the expression of obser-
vables, given in Cartesian coordinates, in terms of the new
coordinates. Among these the kinetic energy
T= —(1/2m)ZY_ 2}_ 8/8x2; has been computed and
found to have relatively simple forms. This comes initially as
asurprise in view of the complicated manipulations involved
in the transformations. The purpose of this note is to exhibit
the geometric origin of these simple forms and to show that
they emerge directly from a very general form of the La-
place~Beltrami operator.

Observe that the many-particle kinetic energy is pro-
portional to the Laplace-Beltrami operator 4 on R*". In
terms of an arbitrary coordinate chart o)

r=— Lg__ 1 1 29

- L, 2 Vg I =, )

Yy

where g*” is the inverse to the metric 8,,=8(0/9y,,d/3p,)
and g =det(g,,,). However, to avoid the unwieldy coordinate
change implicit in (1), it is convenient to express 4 in terms
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of an arbitrary basis {7} of vector fields. For an arbitrary
Riemannian manifold one readily finds, from the invariant
definition of 4,"

A—\—/——z#\/gg”ﬁ-l-Z(ZC )g“ @)

g m

whereg,, = g(7,,7,) and [7,,m,] = 2,C ;. This expres-
sion clearly commdes with (1) for the special case
7, = 0/,

For our case of the Euclidean space R*Y, there is a still

more convenient expression which eliminates the \/g de-
pendence. On R*Y, an arbitrary vector field 7, can be ex-
pressed in terms of Cartesian derivatives

=3 Sap ®

n=1i=1

Thus, if the set of vector fields {7
inverted to give

I 3y, @
"

dx™

The metric and its inverse in the {7} basis are therefore

..} is a basis, Eg. (3) can be

8 =8(m,m,) = ZA nA &)

Z(A kA i 6

Substituting Eq. (4) into the Cartesian expression
=—(1/2m)Z,, 3*/3x:, for the kinetic energy, we obtain:
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This is the desired form used in this note.

To separate 7" into collective and intrinsic components,
a set of vector fields {7, ] must be chosen to contain a subset
of collective momenta, i.e., vector fields on the G orbit, plusa
complementary set of intrinsic momenta. A natural choice
for the collective momenta, for example, is obtained from the
Lie algebra of the group G.

If we impose the requirement that the intrinsic mo-
menta be everywhere orthogonal to the collective momenta,
it follows that the metric assumes block diagonal form and
that the kinetic energy splits into collective and intrinsic
parts,

T= Tcoll + 71mt (8)

We now apply the above results to evaluate T, for the
cases G=S0(3) and G=GL.(3). For the latter case we also
evaluate T,

nt*

2. SO(3) ORBITS

The tangent space to an orbit surface of SO(3) is
spanned by the angular momentum L,

L,=—i 2 EAUZx , k=123 9)
=1 n=1 X pj
The metric on the orbit is therefore
g k=8(LyHLy)
— (64 1 tr@ — Qi) (10)

where Q. , = =/ _ X« X, is the quadrupole moment. But,
this metric is recogmzed to be proportional to the rigid body
inertia tensor, g, , = — (1/m).% ;. .. Moreover, the second
term in Eq. (7) is zero, since in this case zmj(a/ 9x,,)A § = Q.
Therefore, the collective kinetic energy is given by

Ton=% 3 Lils L (1)
Kk

This expression is identical to that obtained in Ref. 5 by the
much more complicated chain rule method. However, it dif-
fers from the expression of Villars’* who used intrinsic mo-
menta which were not orthogonal to the angular momenta.
Consequently his expression for T also contains a coupling
termi.

3. GL.(3) ORBITS

For GL.(3) the construction is entirely similar except
that there are now two bases of interest. Both cases are com-
puted below.

(1) One natural basis of vector fields tangent to the

GL.(3) orbit surfaces is given by the nine operators 7,
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Ty=—i S Xy (12)

The metric is

8r j’,ing(Ti’ j”Tij)

5]" th" i (13)
with inverse
g = ~8,40";, (14)
For the second term in the expression for the Laplace-Bel-
trami operator, Eq. (7), observe that 4 ¥ = — i§}x,.
Hence,
— ING,. 15
% c?x j ¢ (15

Therefore, the collective kinetic energy is evaluated to be

lejQ T —TNZ Qj i" (16)

iy

coll -

This expression is similar, but not quite identical, to that
given by Weaver, Cusson, and Biedenharn'® who restricted
their consideration to orbits of the subgroup SL(3) C GL.(3).

(b) There is a second basis for the vector fields on the
GL.(3) orbits, which is preferred since it partially separates
the rotational from the vibrational degrees of freedom. This
basis is defined as follows’:

For each xeR*", let R (x)eSO(3) denote the orthogonal
matrix which diagonalizes the quadrupole moment
Q= N x, X, The corresponding eigenvalues are denot-
ed by 4 3(x),4 4(x),4 %x)). Thus, R-Q-'R = diag(4 3,4 2,4 2).
Define a basis of vector fields for the GL.(3) orbit surfaces by

{L 4t 4L 1A =1,2,31, where
L,= Z z EABCRBr‘RQ/Tij’ (17a)
BC
t,= ZRAiRAjTij’ (17b)
L= Z 2 GABC RpRcmy (17¢)

B.C ij

In order to determine the kmetic energy, it is first necessary
to compute the metric with respect to this basis. It is found
that the only nonzero components to the metric tensor are
given by the diagonal entries

gltpt)=—4% (1B)gLyL)= —UL+A7)
(18b)
HL L )= —(A%s+AL), A4BCceyclic, (18¢c)
and the off-diagonal components
8Ly Z =2k (18d)

The inverse to the metric is easily evaluated, since at
most a 2x 2 block needs to be inverted in the subspace
spanned by {L,,.¥" ,}. The inverse is given by
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The calculation of the Laplace~Beltrami operator will

be completed if we can evaluate the second term in Eq. (7).
This requires the computation of the derivatives of the coef-
ficients of the vector fields. If we define these coefficients by
d

L = L i Ty - t
4 ;, 4 ax™ 4 ;, ax’"f
)
L, = L ,
4 gj 4 x,y

and observe the identity,
2 Ti_,(RAr‘RBj = —ib4p
i

then one can show that

> [AX+AD/A%—-2D),
C#A4

>-am= za ) =0 (202)
my mj
and
2
D = —iN-2—2 ¥ —’1——2 .(20b)

g OX 4 AL —A2

Therefore, the collective kinetic energy is given in this basis
by

1 ( Ap+At
T = — 2T @i+ £y
= Z A% _ ALy 4 A
44 1 1
—ﬁ“&c—z“fALA)Jr—E T3l
Ae—Ae) 2 A%
i N2 1
- L +2 3 e Y
2m 4 ( A2 B;A “Ai—-1%) i
@n
where we have used the fact that [L  Az] = [.L 451 =0.

This expression is identical to that obtained by Gulshani and
Rowe® using the much more complicated chain rule method.

4. THE INTRINSIC KINETIC ENERGY

To find T, to complement the T, of Eq. (21) in Eq.
(8), it is necessary to first find a set of 3N — 9 intrinsic mo-
menta which are everywhere orthogonal to the GL,(3) col-

lective momenta.

First observe that .#° , of Eq. (17c) can be written

N
La=—=Fpc=— O DD cimn ABC cyclic,
m,n =1

22

where @2)
. a a

—1 X i —Xpi 4 23

,; ( x,; é‘x,,,,-) @3
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Thusj,,, is an angular momentum in N-dimensional particle
index space. Furthermore, since

N
2 D un? gn=b4p
n=1

it follows that the elements & ,,, 4=1,2,3, n=1,..., N, may
be identified with the first three rows of an SO(¥) matrix.

These observations suggest that one considers, as in-
trinsic momenta, the 3N — 9 vector fields

/aA=

(24)

(25)

A
S DD g @ =4N, A =123,

mn =1

(26)
where the elements & ,,,, @ = 4,...,.N, m = 1,...,N complete
an SO(N) matrix.

We immediately find
8(F aiLp)=8(7 wnrts) =8(F wtr-L 8)=0, 27

which confirms that the intrinsic momenta and the collec-
tive momenta are orthogonal. The intrinsic components of
the metric are

g(/aA’fﬂB):(saBaABA i
and hence, since 2,,, J(a/axmj)(/ " }=0, one obtains
29
2m ;:1 A2 2 29)

This T}, plus the T,
kinetic energy 7.

(28)

ll’\l

- of Eq. (21) give the total many-particle

Since the Euclidean space R*" is the direct sum of the
Euclidean subspaces R*", the center-off-mass space, and
R3=D, the configuration space of relative coordinates, it
follows immediately that the kinetic energy can be further
decomposed,

T=T +TLU”+T

cm int?

where T is the center-of-mass kinetic energy and T, and
T, are respectively the collective and intrinsic kinetic ener-
gies for R*™ Y. This is the decomposition of T obtained by

Zickendraht® and by Dzyublik ez al.’

5. CONCLUDING REMARKS

The contruction outlined above is very general and can
be employed to yield other decompositions of the kinetic
energy, e.g., that appropriate for the K-harmonic coordinate
system of Simonov."?

In the following paper we shall consider the explicit
construction of collective and intrinsic coordinate charts
and the corresponding decompositions of the many-particle
Hilbert space into collective and intrinsic sub-Hilbert
spaces.
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The quantum harmonic oscillator revisited: A new look
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L. de la Pefa® and A. M. Cetto

Instituto de Fisica, UNAM, Apdo. Postal 20-364, México 20, D.F. Mexico

(Received 28 June 1978)

We apply the theory of stochastic electrodynamics to the study of the (nonrelativistic) harmonic oscillator
by using the Fokker—Planck method. It is demonstrated that the equilibrium distribution in phase space
is exactly equal to that given by quantum statistical mechanics, i.e., the corresponding Wigner
distribution, and that analysis of this distribution by means of a decomposition in terms of canonical
densities leads automatically to the usual description of quantum mechanics in terms of excited states. All
fundamental equations of quantum mechanics are recovered as approximations to zero order in the
radiation terms; the first-order terms lead to the radiative corrections predicted by quantum
electrodynamics, namely, the decay of states and the Lamb shift of the energy levels. The necessary
differences between both treatments of the oscillator and their implications are briefly discussed.

I. INTRODUCTION

Fifteen years ago, Marshall published a remarkable pa-
per! concerning the quantum-mechanical harmonic oscilla-
tor as seen from the standpoint of stochastic electrodynam-
ics (SED). This paper had been preceded by a small series of
independent attempts to study certain properties of linear
systems as predicted by SED,? inspired mainly by Welton’s
phenomenological account of the Lamb shift as a result of
vacuum fluctuations® and by the spirit of quantum electro-
dynamics (QED) as reflected, e.g., in Weisskopf’s beautiful
review paper,*in which the vacuum is considered a real field,
the fluctuations of which are the source of some significant
properties of the electron.

In his pioneering paper, Marshall shows that a pointlike
oscillator subject to a random zero-point radiation field may
reach a stationary phase-space distribution as a result of the
interplay between the vacuum-field force and the radiation-
reaction force (2¢?/3¢*%); then the system is found to behave
essentially as a quantum-mechanical harmonic oscillator if
the field has a spectral energy density pi(w) = #i|w|*/27°c
and if A is identified with Planck’s constant. Moreover, Mar-
shall showed that this similarity in behavior is extended to
temperatures higher than zero if the spectral density is taken
to vary according to Planck’s law.

The above mentioned work'? gave birth to SED, a the-
ory which in the course of the last 15 years has received
increased attention from some of its founders®* as well as
several newcomers.”* Though SED is far from being a fin-
ished theory, it has been shown to furnish a basis for the
explanation of several typically quantum-mechanical phe-
nomena in particularly clear physical terms. Accounts of
some of the main aspects of this work may be found in var-
ious review papers.'’

Many important questions remain, however, to be an-
swered before concluding that SED describes and explains
correctly the behavior of quantum systems at a more funda-
mental level than the usual theory does, and that it may
therefore represent a good alternative to the latter. Some of
the main open questions are related to the well-known prob-
lem of defining a phase-space description for quantum me-

“Consultant, Instituto Nacional de Energia Nuclear, Mexico.
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chanics (QM), to the status of QM as a statistical theory, and
to the origin of quantization, to mention but a few. Such
questions, which have troubled many—if not all—of us at
least at some instant, reappear at their full strength when
trying to endow the usual formalism of quantum theory with
a more fundamental basis, as SED proposes to do. The re-
sults obtained up to now show that SED may not only revive
these and other questions, but may also be in a good position
to answer them satisfactorily.

It is within this spirit that we return—once more—to
the harmonic oscillator and exploit its physical and math-
ematical simplicity to obtain some old and some new results.
In view of both the novelty and the economy of the ap-
proach, which produces from a single picture the detailed
behavior of the oscillator as predicted by quantum mechan-
ics, quantum statistics, and quantum electrodynamics, the
work presented here may hopefully be valuable also for
physicists working in more orthodox fields. We should be
pleased if this paper can be considered a retake of Marshall’s
work of 1963, in the light of the more recent developments of
the theory.

The structure of the paper is as follows. In Sec. IT we
recall and discuss the Fokker—Planck equation which has
been derived more than once for the harmonic oscillator of
SED. When the system is in thermodynamic equilibrium
with the incoherent background radiation field at tempera-
ture 7, the solution of the Fokker-Planck equation coincides
with the Wigner distribution for the quantum oscillator, as is
shown in Sec. II1. In Secs. IV and V the temperature is elimi-
nated from the description by a formal manipulation in or-
der to generate a statistical temperature-independent de-
scription of the mechanical system in phase space, which is
mathematically complete and leads in a unique way to the
time-independent Schrédinger equation for all eigenstates—
ground and excited—as is shown in Sec. VI.**

The Hilbert-space formalism emerges therefore as a
natural means of description of the harmonic oscillator of
SED, even in phase space. That this, however, is neither nec-
essary nor possible for a general stochastic oscillator is evi-
denced in Sec. VII, where it is shown that even though the
Fokker—Planck equation for a Brownian oscillator has ex-
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actly the same form as the corresponding Fokker—Planck
equation of SED, the formalism developed in the preceding
sections is not only superfluous, but even misleading in the
Brownian case. The reason for this is traced to the Boltz-
mann statistics governing the thermal bath which causes
Brownian motion. To disclose the Planck statistics of the
background radiation field together with the analysis of the
phase-space density in terms of Boltzmann factors as the
source of quantization in SED, is one of the main points of
the present paper. If we add to this the fact that only a spec-
tral density p,~w* at T = O—as assumed here—is able to
generate the correct equilibrium solution for a harmonic os-
cillator with radiation reaction, as shown by Marshall,' we
obtain a fundamental conclusion: SED is the only physically
consistent stochastic theory capable of reproducing—to the
extent to which a truly statistical theory can do so—the re-
sults of QM; at least for the harmonic oscillator this conclu-
sion is inescapable.

In Sec. VIII, the physical meaning of pure states is dis-
cussed within the frame of our phase-space description, and
the temperature dependence, left out in Sec. IV, is brought
back to retrieve Bloch’s equation for the canonical density
matrix. Therefore, SED describes correctly both the me-
chanical and the thermodynamic aspects of the quantum
oscillator in equilibrium. Also, analysis of the nonstationary
problem leads to the time-dependent Schrodinger equation
as a zero-order approximation (in 7) to the equation of evolu-
tion of the mechanical system (Sec. IX).

In Sec. X, a calculation of the radiative effects to first
order in 7 leads to the Lamb shift and the decay rate of ex-
cited states, both as functions of temperature. By setting the
temperature equal to zero, the well-known results predicted
by nonrelativistic QED are recovered.

A discussion of the full meaning of these results and
their bearing on the problem of the existence of divergencies
in nonrelativistic QED is left for the concluding section.

Il. FOKKER-PLANCK EQUATION FOR THE SED
OSCILLATOR

Under the assumption that the (otherwise classical)
electron is continuously scattered by a background radiation
field, and in turn contributes to this background field by
radiating when accelerated, SED leads to a generalized
Fokker—Planck equation for the phase-space distribution,
namely'?'*1¢% (to first order in 7 = 2¢*/3mc?*)

8_Q + _lva + Vp'(F + lp.vF)Q
at m m
-V, VpP#Q — 77, D*Q =0, (IL.1)

where F is the external force acting on the electron and the
diffusion operators are given by

DIQGpt) =€ L dt'CET(OET ("))
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Ix
ok

% Qxp,t") 11.2)
Pj
and
DO (xpt) = f dt EP(OET()
d,
xZ o @ pit). (IL3)
ap;

Here, if the particle passed through x(¢ ;¢ ) and p(z ;¢ ) at

t’ <t, a classical trajectory with the stochastic force turned
off would bring it tox(¢ )and p(t ) at ¢t ' = t. E " is the electric
component of the stochastic field, modified (to order 72) by
the presence of the particle. For a Planck-distributed field we
have

’ 2 “ jw(t — 1
EWEEN =5 pr@eVdws;  (114)

with the spectral energy density given by

filo]* 1 + e PR

l14¢€
w) = = , 11.5

prl) =55 T = pa) 1 (IL.5)

where py(w) refers to the zero-point field,
#ilw

o) =221 aLe)
while the factor (1 — €)7!(1 + €), with

€=e PR g kT (IL7)

expresses the thermal dependence of p {w).

In eliminating the run away solutions generated by the
radiation reaction force m7X, the spectral density is modified
by the introduction of an extra factor into Eq. (IL.5), which
can be absorbed in p(w),

Pr@) = —— o). (IL8)

1 + 7w?
The details of this modification will be found in Ref. 14.

For the harmonic oscillator the operators D acquire a

particularly simple form: To first order in 7 and under the
assumption that the system is close to equilibrium, the Q in
Egs. (I1. 2) and (II. 3) may be extracted from the integral sign
and both D*” and D*? become constant factors. We call this
procedure the Markovian approximation (for a more thor-
ough discussion see Refs. 13 and 16). For a general external
force, the process can of course be far from Markovian. For
the calculation of D?” we have dp/dp = cosw(t — t’)
-exp[ — 47wt — ¢ )]. In the Markovian approximation, all
terms of order 7 within the integral can be neglected, Q may
be taken out of the integral, and the limit of integration can
be extended to infinity; Eq. (IL. 3) reduces then to

D= ezﬁikf dt 'CE(t)E(t ) ycosw(t —t')
0
and this gives, when introducing Egs. (II. 4) and (I1. 5),
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1—-¢

firmew® 1 +€
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where D, = {firma’.

D=5y (IL.9)

The calculation of D™ is somewhat complicated by the
appearance of a divergence. Since this term is related to a
radiative correction, we postpone its calculation until Sec. X,
where it will be shown to be also a constant factor propor-
tional to 7 [see Eq. (X.15))].

We now rewrite Eq. (IL. 1) for the one-dimensional har-
monic oscillator in the form

Jd a
i (Lo + L)Q +-—L,Q@=0, (I1.10)
at dp
where L, is the classical Liouville operator,
Lo=2 9 _ pix (IL11)
m oJx dp
L, is a correction of order 7 to L,
82
L,=D"* , (I1.12)
dxdp
and L, contains the diffusive and dissipative terms,
L = —ro'p — DP"—a—. (I1.13)
dp

The grouping of terms in Eq. (II.10) has been made
according to their properties of transformation under an in-
version of the momentum p: L, and L, both change their
signs, while 3,,L1 does not, due to the fact that the first non-
vanishing contributions to D*” and D™* are even in p. This
means that if the equilibrium distribution is assumed tobe an
even function of p, i.e.,

Qx, —p)=Q(xp), (I1.14)
then Eq. (I1.10) separates into two equations:

(Lo +L)Q =0, (1L.15)

iLIQ =0 (11.16)

dp

By integrating Eq. (I1.16) to L,Q = A (x) and integrating
once more over the whole range of p we get h (x)§= _dp
= — [(r0’p + D??3,)Qdp = 0, due to the condition (II.14);
we therefore must take 4 (x) = 0 and hence
L,Q=0. (I1.17)
Equations (II.15) and (I1.17), obtained under hypothesis
(I1.14), serve to determine completely the equilibrium distri-
bution. Since L, is but a radiative correction to L,, the equi-

librium distribution to zero order in 7 is the solution of the
system of equations

LQQ: O,
LQ=0.

(11.18)

(I1.19)
Within this approximation, the equilibrium distribu-

tion satisfies the principle of detailed balance. To prove this

explicitly, we recall that this principle, when applied to the
(stationary) Fokker-Planck equation

LQ=0, (11.20)
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may be expressed in terms of the conditions”
0=0, (IL.21)
LQf=QL'f, (I11.22)
for any real, well-behaved function f(x,p), where the bar de-

notes a reversal of the classical motion (such that X = x,
P = — p)and L is the adjoint of L. For

L=L,+ iL, (I1.23)
dp
Eq. (11.22) yields, after minor transformations,
a
o= -2 L (1124

ap
With f = 1 we recover Eq. (I1.20) and hence Eq. (11.24) re-
duces to (L,Q )(d, ) = 0; since fis an arbitrary function of x
and p, we thus obtain

LQ=0
and hence
LQ=0.

These are precisely Egs. (I1.18) and (I1.19), which we have
obtained by imposing only the condition (II.14). Hence our
hypothesis (I1.14), though weaker than the conditions for
detailed balance, leads to the same separation of the Fokker—
Planck equation into a Liouville equation for the stationary
solution, Eq. (II.18), and a diffusion-dissipation equation,
(I1.19). It should be added that detailed balance breaks down
when the radiative correction to Lo, namely L,, is included,
which shows that our hypothesis (I1.14) is less stringent than
detailed balance. In other words, the one-dimensional SED
system satisfies the hypothesis of detailed balance only when
radiative corrections are disregarded. It must be stressed
that the above results apply quite generally to any one-di-
mensional SED system, the harmonic oscillator being only a
particular case of this situation.

lil. EQUILIBRIUM SOLUTION IN PHASE SPACE:
THE WIGNER DISTRIBUTION

The equations determining the stationary phase-space
distribution of the oscillator in equilibrium with the radi-
ation field, in the Markov approximation, i.e., Egs. (I1.18)
and (I1.19), read, when written in disclosed form,

299 92 _o

X II.1
m dx dp ( )
T0’pQ + pm»92 _ 0, (111.2)
p

with D?7 given by Eq. (I1.9). Before proceeding to solve these
equations, let us introduce the dimensionless variables:

, 1 , 1/2
P = —\-/——ﬁ-—p, x = (’l’ﬁﬂ) x, (I11.3a)
mar
and
2/(p 1
£ %(;_m n mezxz) —prixn (I11.3b)

Then Eqgs. (ITIL.1) and (1I1.2) read
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90 _ .30

9% _ =0, L4
arw P (I11.4)
po+1te9% (IIL5)

l—€adp

From now on, however, we will simply drop the primes on x
and p, since no confusion should arise.

Equation (I11.4) tells us that Q is a function of the ener-
gy variable only,

@=0¢)
By denoting d,Q = @', we then obtain from Eq. (IIL5),
0+ : Ry LY (11L.6)
the solution of which is
1—¢ )
= Nexp| — .
¢ p( o 65‘
The factor N is determined from the normalization
condition,
1:ffgdxdp=1rﬁf Q(§)d§=1rhNi t€ Ly
o —€
Hence the equilibrium solution is
1 1—€ ( 1—e€ t)
=— exp{ — . I11.8
Y 71 T (I11.8)

This phase-space distribution for the harmonic oscillator co-
incides exactly with the Wigner distribution for the prob-
lem,*? i.e., it is the result obtained from QM by applying the
Weyl transformation to the canonical density matrix for the
harmonic oscillator, which in dimensionless variables may
be written as follows?®:

1—¢€

1
ﬁVTr—\/l—ez

plx,x;) =

XeXp( - ((1 + e)(x} +x3) — 4ex1x2]).

_
2(1 — €)
(I11.9)

To prove this, we recall that the Weyl transformation im-
plies first performing the change of variables
x:x1+x2’ z=x2—-x1
2 2
in Eq. (I11.9), to obtain

(I11.10)

l—¢

1
ﬁV?\/l—e’

Q(x2)=p(x —zx +2)=

—€. " 1+ 622)

><exp—(1 I
—€

14+¢€

and then taking the Fourier transform of Q (x,z) with respect
to z to obtain
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:L 3 — 2ipz
0p)=- f O (v.2)e ~ 2Pidz

_ll-e
fir 1 +€

1—¢
— 2 21 ), (II1.11
exp( —<lx +p1) (IIL11)

whichisjust Eq. (II1.8). Below weshall have occasion toseein
amore suggestive form the origin of this transformation. For
the time being it suffices toaccept the fact that the equilibrium
distribution predicted by SED coincides with the one predict-
ed by statistical QM. The rest of the paperisdevoted toamore
careful study of the connection between both theories.

The mean energy corresponding to this distribution is

pofag_folic

2 2 1l—e

in agreement with Planck’s law—as was expected, since the
oscillator is in thermodynamic equilibrium with a radiation
field with this same energy per normal mode. This result,
though wellknown, isworthsome comments. Astemperature
goes to zero (é—0), the mean energy tends to its asymptotic
value

E, = i,
i.e., a value different from zero, as a result of the existence of
unfreezeable fluctuations in the field, corresponding to its
zero-point energy. The oscillator in equilibrium with this
field then also acquires an unfreezeable motion; hence, ac-
cording to SED the zero-point energy of matter is but a result
of the existence of the zero-point energy of the radiation
field. In the case of purely mechanical systems, such as, e.g.,
Brownian motion, the heat bath is totally frozen at 7= 0
and with it also the stochastic motion. We see here an aspect
of the essential role played by the stochastic field of SED in
explaining the results of QM: No mechanical model will
do.”?

(111.12)

IV. SEPARATION OF MECHANICAL AND
THERMAL VARIABLES: THE ENERGY
SPECTRUM

We now explore the possibility of excluding the tem-
perature from the description, in order to extract and ana-
lyze the purely mechanical problem of the oscillator, as is
done in QM when dealing with pure states. We will see that
an immediate result of this procedure is the emergence of
discrete energy levels. For this purpose, let us express the
partition function of the system Z () as an integral over
states of the oscillator characterized by a given value of an
abstract variable E; we assume that the relative probability
with which each of these states contributes to Z (/3 ) is proper-
ly described in terms of canonical densities and the spectral
density g(E); thus, we write Z (£ in the form

Z@B) = ng(E)e ~PEJE.

The parameter E plays clearly the role of an energy and we
will call it the energy variable; so g(E ) is the spectral density

av.1)
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of states of the oscillator with energy E. More generally, we
may define the mean value of any physical quantity 4 de-
pending on the energy by means of the formula

- 1 ®
APB)=——| AE)g(E)e PEdE. av.2)
®B) ZB)h (E)g(
Equation (IV.2) and its inverse—assuming that they exist—
allow us to construct from a function of f—i.e., tempera-
ture—a (B )=4 (5) a new function d(E )==A4 (E ) depending
now on E, whenever we know Z (#) or its inverse, g(E ).
Equations (IV.1) and (IV.2) taken together show that
the mean value of 4 (£ ) = 1 is unity, as it must be; taking
A (E) = E we get for the mean energy the well-known
formula

R ~pEgp — _ 9 1nz
E Zfo Eg(E)e iz )

whence
z@)=ex| - [ B@ap’]

For the harmonic oscillator the mean energy is given by Eq.
(II1.12), with € = e ~#%; hence we can in fact calculate the
partition function by means of a simple integration,

(IV.3)

~ 1Pl fe=> \_ exp(— iffiw)
Z(ﬁ)—exp(~ 2 l_e_;d)— 1 — exp( — fAw)
(IV.4)

According to Eq. (IV.1) the spectral density of states is given
by the inverse Laplace transform of the partition function; to
calculate it we develop the denominator of Eq. (IV.4)in a
power series of ¢ ~ 7@ thus getting

gE)=LZB)= 5 Lrexpl — Ptk + )]
4]

K=

or

gE)= 3 8 — fiwtk + ). (IV.5)
k=0

Thus we see that the density of states is zero for all values of

the energy £ that do not belong to the discrete spectrum E,,

where

E, = fiw(k + }). (IV.6)
Stated in more usual terms, we have obtained the surprising
result that the energy E is quantized.” Two comments are
worth mentioning at this point. The first is connected with
the use of Planck’s law; it might be alleged that the quantiza-
tion of energy has been introduced through the back door,
since it is already contained in the assumed density for the
field; this, however, is not the case, since Planck’s distribu-
tion may be derived without any quantum postulate from the
assumption of SED, namely, the postulated existence of the
zero-point field.?” The second comment is that the emer-
gence of the right discrete spectrum of £ depends crucially
on our (arbitrary) selection of Gibbs’ densities in the defini-
tion of our linear transform, Eqgs. (IV.1) and (IV.2). Since
this transform will lead us to the usual Schrédinger descrip-
tion of the oscillator in a unique and natural way (though in a

473 J. Math. Phys,, Vol. 20, No. 3, March 1979

rather abstract treatment), the justification on physical
grounds of the need of just this transformation, which here is
simply postulated, will close the gap to a rigorous derivation
of Schridinger’s theory from SED. In other words, to ex-
plain why we must go—and not only why we may go—to the
usual quantum mechanical description of the oscillator, we
must derive Egs. (IV.1) and (IV.2) for the harmonic oscilla-
tor from first principles; this will abviously imply an elucida-
tion of the meaning of the variable E, introduced here in an
entirely formal way.

V. SEPARATION OF MECHANICAL AND
THERMAL VARIABLES: PSEUDOSTATES OF
THE OSCILLATOR

With g(£) given by Eq. (IV.5), Eq. (IV.2) reduces to
[with a(8)==A4 (B) and d(E)=A (E)]

1 &, — BE
aB)y= a(E,)e x
z) 2
where the partition function is given by [see Eq. (IV.4)]

ZB)= 3e %=
3]

(V.1)

/2
L (V.2)
l—€
We now use these results to analyze the phase-space density
Q (x,pif ) in terms of energy states; for this purpose we first
define the energy pseudostates Q,(x,p) as follows,

Q,(x.0)=0 (x,p;E,). (V.3)

The reason for the name “pseudostate” will become appar-
ent below. From Eq. (V.1) we get

Q(§;5)=—;—5‘,Qk(§)e‘ﬁ5‘-
0

By virtue of Eq. (V.2), we see from Eq. (V.4) that the Q, also
are normalized to unity,

ka(s‘ xdp = 1.

We can now proceed to determine the components
@,(£) by introducing Eq. (V.4) into (111.6),

S0+ LHE S0gek =0,
4]

1 —e€

(V4

(V.5)

orsince (1 +e)(1 — €)' =Zr(e" + €™+ 1),
sz[Qk + Q,k z(em + €m+ 1)] =0.
k m

Regrouping terms with equal power of ¢,

gen[Qﬁ MZZOQ;,, + "EIQ;,,} —0,

m=0

and noticing that this equality must hold at any temperature
(i.e., any value of €), we obtain

0, +0,+2"S Q=0

m=0

(V.6)
for any n>0 [with Q,, = 0 for m <0, since the energy was
assumed nonnegative from the beginning; see Eq. (IV.2)]. By

writing this equation for n — 1,
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v nﬁz .
Qn-l+Qn—l+2 z szoy

m=20

and subtracting from Eq. (V.6), one is left with a simple
recurrence relation among the functions Q,,

0, +0.=0C1— Q.1
For n = 0, this yields

Qo+ 0 =0, @=Ce™*
To obtain the subsequent solutions Q,, we use the ansatz

Q.=C,e P& (V.8)
substitution of Eq. (V.8) in (V.7) gives

P,=2P P

n—17""

(V.7)

n—1
which upon the change of variable y = 2¢ is easily recogniz-
able as a recurrence relation for the Laguerre polynomials

L.y,
dLn dLn — 1

dy =L,_,— dy
We therefore find that Eq. (V.8) can be written as
Q.= C,e *L,Q2¢)
where L, is the Laguerre polynomial of order n (irregular

solutions of Laguerre’s equation are obviously eliminated on
physical grounds),

n ol —2£)

Loy = 5 =2
s=o (n — 9

and C,, is determined from the normalization condition [see

Eq. (5)]
I P CI
= f Q,,d§—Cnfo o= SL, 28 )dE

whence

(V.9)

C, = (;Q_
mh
The normalized solution is therefore

0,= (—‘ﬂ—}e ~4L,(26) (V.10)

and the mean energy assigned to @, is correctly given by Eq.
(IV.6) as can be proved by calculating the integral

[ s0.¢0ae

with the use of Egs. (V.9) and (V.10), or else, by multiplying
Eq. (V.7) by £ and integrating over £. From the differential
equation satisfied by the nth Laguerre polynomial

EL. 4+ (1 —2£)L,+2nL,=0 (V.11)
we obtain the equation for Q,,
Q. +Q,+Qn+1-£)0,=0, (v.12)

which is, by the way, of the same form as the radial part of
the Schrédinger equation for the s states of the hydrogen
atom.

The Q, form an orthonormal set of functions in £ space,
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as follows from Eq. (V.12), and therefore only one of them
(namely Q) is positive definite throughout. This means that
the Q,, for n0 do not represent real distributions for phys-
ical states; it is their combination in nonnegative forms such
as Eq. (V.4) that represents a true distribution. It is to stress
this fact that we say that the O, represent pseudostates of the
system. In the limit f— o (T—0) Q tends to Q,, i.e., Q, is the
equilibrium distribution at temperature 7" = 0.

Even though the isolated Q, correspond to real physical
states only for n = 0, the fact of their forming a complete
basis in £ space renders them particularly useful for the anal-
ysis of the harmonic oscillator even outside thermodynamic
equilibrium. In the following we shall analyze some of their
mathematical properties, mainly those which will help us
establish the connection with the usual (Schrodinger) de-
scription in configuration space.

We first note that Eq. (V.7) suggests the introduction of
raising and lowering operators. Let B and its adjoint B be
such that

0,= g Q.1 (V.13a)
n

Q1= iBQn- (V.13b)
n

Introducing the latter into Eq. (V.7) one gets

n(Q,+ Q,) = BQ, — 3.(BQ,)
and introducing (V.13a) into Eq. (V.7) one gets after making
n—n+1,

(n+D(—Q,+Q)=B"0,+3.(B'G,).

Addition of these two equations gives

(2n+1Q,=LQ,+3.(MQ,) + 3.0, (V.14)
where

L=L"=B+B' (V.15a)
and

M= —M=B"—B. (V.15b)

Equations (V.12) and (V.14) can be combined to obtain an
equation for the operators themselves,

—20,+&—69; =L+ M. (V.16)

By taking the adjoint of this equation and subtracting one
from the other, one gets

G M) = —48§+5§§—82: — 20,
whence
M= -2, + M,

where M, is an integration constant. By introducing this into
Eq. (V.16) one obtains

L=£(1+3) - Mg,
B' and B are then, according to Egs. (V.15),

M,
BY=LL+M)= %(ag —1)p— 2°(a-§ — 1), (V.172)
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A2{°(a§+ 1). (V.17b)

To determine M, we notice that at £ = 0, Eq. (V.12) reduces
to

B=%(L—M)=§(6§+l)2—

@, = —-Q,—-0,
but the term on the lhs is equal to 2B'Q,, _ ,, according to Eq.

(V.13a), and hence, by applying (V.17a) at £ = 0 and com-
paring with Eq. (V.7) we obtain M, = — 1, and therefore,

Bf = 3@ — 17+, —1] (V.18a)

B =3[0+ 1)+, + 1]. (V.18b)
The commutator of these operators is

[BT,B] =§8§+8§—§, (V.19)

so that the differential equation (V.12) can be written simply
as

[8.8"1Q, = (2n + 1)Q,. (V.20)

The operators B, B are helpful in determining statisti-
cal properties of the pseudostates Q. Let us take for instance
the average of an arbitrary real function of energy F (¢ ),

(0| F | nd = rhi[ FQ,dé = ﬁfFB "0,  \dé
n

Z—F—ﬁ—fQ,,_lBngz—l{n— 1|BF |n — 1.
n n

By applying this formula to F (£ ) = £ one obtains
r 1 .
nl§ny=—AKn-1/&""
2n
+Q@r+DE+PET 0 — .

For r = 0, this gives

E, =gl =2n+1, (V.22)
whereas for r = 1 one gets

2 -Er=1, (V.23)
and so on.

Equation (V.22) gives once more the mean energy of the
pseudostate Q, as E, = LAiw(n + 1), just as in QM, but Eq.
(V.23) shows that the energy has a nonzero dispersion; in
fact, for all k > 1 CH*>=£(H Y and {n|H *|n>
= E 2 + (#w)?, compared to the QM value{n |I/J\2|n> =E2
We see that in SED (and, as we have previously remarked, in
any stochastic theory developed as a foundation to QM) the
energy and all other physical quantities are not dispersion-
less, even in “pure” states such as Q,,. Here, then, we uncover
a rather fundamental difference between SED and QM, in
the shape of a particular instance of a general result due to
Cohen,* according to which no phase-space description can
exactly reproduce all results of usual QM. From the point of
view of SED, this is an almost obvious result, since no sto-
chastic theory can generate dispersionless (physical) states
of the dynamical variables. The reason for this difference
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between SED and QM is that QM is not a strictly statistical
theory, whereas SED is. In our particular instance this may
be seen by realizing that the definition of the dispersion of the
energy used in QM in terms of eigenvalues of the Hamilton-
ian operator differs from that used in our statistical phase
space description. Hence a seemingly terrible problem (for
SED, of course) reduces when closely analyzed to a simple
difference of definitions, from the formal point of view. Of
course, physically speaking both theories predict different
results for the dispersion of the energy; it is important, how-
ever, to note that this basic difference cannot be tested ex-
perimentally with spectroscopic studies, for instance, since
these only reveal energy differences occurring during transi-
tions between pseudostates and we will have occasion below
to show that the transition matrix elements are the same in
both theories (see Sec. IX). We may try to explain these re-
sults by saying that in SED, where no sharp energy levels
exist, the transition must be understood as a resonance phe-
nomenon involing the oscillations of the background field.

VI. RETRIEVAL OF USUAL QM

As already recalled in Sec. I11, application of the inverse
Weyl transformation to the phase space density leads to the
description of the statistical behavior of the system in terms
of the density matrix in the coordinate representation. In this
section we try to look at the origin of this connection in a
more direct way by using a method suggested by previous
work.12.13,15,16.19

For this purpose we return to the description in phase
space, i.e., to Eqgs. (I11.4) and (I11.5):

pd.Q —xd,0 =0, (I11.4)
1
p0+—~11€50-0 (I1L5)

2 1—e€
In eliminating the temperature dependence by a proce-

dure entirely similar to that of Sec. IV and V, one arrives at
the equations

pd.Q — x3,0,, =0, (VL1a)
(xd, + pd, + 4xp)Q; = (4xp — pd, — x3,)Q; _,. (VLIb)

Equation (V1.1a) expresses the fact that each Q, is a function
of £ = p? 4+ x? Eq. (VI.1b) can also be obtained more direct-
ly from Eq. (V.7).

By combining Egs. (VI.1) one obtains the following set
of equations:

(ax + 2x)Qk = (2x - ax)Qk —1»

G, +2p)Qi = (2p — 3,)Qi _ .

Just as in going from Eq. (I11.8) to Eq. (II1.9) we Fourier
transform these equations with respect to the variable p; then
for

G, (x,2) = f dpe?™Q, (x,p)

we obtain the set of equations
@+ 200, = (2x — 30,

(V1.2)
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OB, +22)0; = — (22~ 3)0,_

These equations are identical except for the overall sign of
the rhs. This suggests introducing a new pair of variables x,
and x,, namely,

X\=X—2, X,=X+2 (VL3)
in terms of which they transform into

@+ xl)Qk =(—-0,+ xz)Qk —1 (V1.4a)

@+ x)Qu = (— 8+ x)Qs _ . (VL4b)
In particular, for k = 0 we obtain

@ +x)Q =0, (J:+x)Q, =0, (VL5)
whence

Qo = Noexp[ — %(x% + x3)]. (VL6)

By the symmetry of Eqs. (V1.4), if Qk _, is a product of
functions of the type

Ok 1 = @r . 1xD@i _ 1(x2),
then also 0, can be written as such. Since Q, is such a prod-
uct, according to Eq. (VI.6), we look for solutions of the
form

Oi = @i ()@ (x). (VL)
According to Eq. (V1.2), Q,(x,0) is the configuration-space
density function p,(x),

m(x)zf dpQ, (x,p) = 0, (x,0).

Since, on the other hand, x, = x, = x at z = 0, as seen from
Egs. (V1.3), we obtain
Pr(x) = @ (X))@ (x|, _ o= i) (VL)
Notice that, even though the Q, are not positive definite

for k=40, the p, are; therefore these marginal distributions
have the formal properties of true densities.

To construct the set of ¢,, we propose to write
i=1,2.

@i (x) = exp( — $x7)0,. (x), (VL9)

where 8, = N \/? is constant, according to Eq. (VL.5). From
Eqs. (V1.4) we then obtain

9k(x|)9'k(xz) = ak — 1(Xz)[ - 9}<— 1(x1) + 2x,6, _ 1(x1)]7

(VI.10a)
0, (x)0 1 (x)) = 6, _ \(x)[ — 04 1(x2) + 2.0, ((x)].
(VI.10b)
Combination of Egs. (VI1.10) gives
0,—2x0,+C0,=0 (VL11D)

for every 6,(x;), where the C, are the separation constants.
From Egs. (V1.10) it also follows that 8, _, ~6; from this
and the fact that 8, is constant, it follows that 8, is a polyno-
mial or order k. By requiring the coefficient of x¥ in Eq.
(VI.11) to vanish we obtain C, = 2k and hence

0, —2x0, + 2k, =0. (VL.12)
The 6, are therefore the Hermite polynomials,
O, (x) = H,(x) (VL.13)
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and the ¢, defined in Eq. (VL.9) satisfy the eigenvalue equa-
tion which follows from Eqs. (V1.9) and (V1.12),

@ (x) + 2k + 1 —xD@,(x) =0. (VL14)
At z = 0 both Egs. (VI1.14) reduce to
@« (x) — X*@, (x) = 2k + D, (x) (VL15)

which is the Schrédinger equation for the probability ampli-
tude [in the sense of Eq. (VI.8)], with the correct eigenvalues
already inserted.

The above results may be summarized as follows: We
started from the energy representation of the phase-space
density

QEs) = %sz@e*’”*
K

with E, = #iw(k + 1)and Z = 3,e ~?*, which we subjected
first to a Fourier transformation with respect to p, obtaining

Q x,z8) = _1- sz (x,2)e BE,
Z%

and then transferred to the x,x, space defined in Egs. (VL.3),
to get

,O(xnxz)EQ (xl —2|- xz; el ; xl;ﬂ)

ZQk (xpx)e PE:
%

N|—

or finally, using Eq. (VL.7),
1 _
plxx) = — S @ ()@ (x)e P (V1.16)
3

Here we recognize the usual expression for the canonical
density matrix in the x representation. On the other hand,
the Q, may be explicitly written with the help of the inverse
of Eq. (V1.2) and Egs. (V1.3) and (V1.7), as follows,

Qo) =5 f G, (x2)e -~ 7dZ

=L [pux = Dpux+ 2z,
27

Werecognize here the usualexpression for Wigner’sdistrubu-
tion for the k th pseudostate,” which happens to be positive
definite only for the ground state and for the equilibrium
state at temperature 7 = 1/kB,

. . _1__ — Ripz
Q(xpB) = Wjdze ’

X Se” Prp(x — D@ix +2).  (VL18)
k

The above results are developments of Egs. (I11.9) and
(I1I1.11) in terms of the basis @;.
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Here also, the structure of the equations suggests the
introduction of raising and lowering operators, now in x,x,
space. In fact, by introducing Eq. (VL.7) into Eqs. (V1.4) we
abtain

@r(x)(0: + X))@ (x2) = @i _ (X)) — F) + X )Py (x1),
@r(x2)(0: + x)@i(x)) = @i _ (X ) — &2 + X)Pic(x2).
This system of equations suggests a separation of the form

Po(5) =~ — 3+ XD (%),
d,
P (x) = di(a,- ey i=12
k

and comparison with Eq. (V1.14) gives d 2 = 2k . We there-
fore obtain

Pir(x) = L4 lpi _1(x), (VI.19a)
Vi
1
@ 1(x) = —==A, i (x), (VI.19b)
Vi
where the lowering and raising operators are
A= L(3.- +x), (VL.20a)
V2
A;= L( —d;+x), (V1.20b)

V2

respectively. These operators obey the commutation
relations:

[4,4:] =[4},4]] =0, (VL21)

and
[4,4]1=1 (V1.22)

When going over to configuration space (z = 0), the
two sets of operators reduce to the well-known creation and
annihilation operators:

A = Ay — (3 1 x)=a, (V1.23a)
2

Al=41- -—1—_.( —d + x)=a', (V1.23b)

V2
and Egs. (V1.19) take on the usual form:

1

P (x) = —=a'g; _ (%), (V1.24a)

@i (X)) = ———aqpk (). (V1.24b)

Vi

The commutation rules (VI.21) and (V1.22) are not altered
in taking z = 0.

The usual formalism in configuration space arises
therefore as a projection of the operator formalism in x,x,
space, related to phase space through Eqgs. (V1.2) and (V1.3).

Vil. COMPARISON WITH BROWNIAN MOTION

A classical theory applied to the harmonic oscillator
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embedded in a classical Planck-distributed background ra-
diation field thus leads in a natural way to the quantum de-
scription of the harmonic oscillator.

This is by no means a trivial results; for instance, it
suffices to make a small but arbitrary change in the tempera-
ture dependence of the equilibrium field, to destroy a good
deal of the theory. To stress the remarkable properties of the
theory and at the same time exhibit the source of the differ-
rences between more familiar stochastic systems and their
QM (ie., SED) counterpart—a point on which still some
confusion prevails—it is illustrative to examine the Brow-
nian harmonic oscillator. The interest of this digression is
enforced by the fact that the Brownian oscillator obeys a
Fokker—Planck equation which has exactly the same form as
the quanturm mechanical one, as far as the phase-space de-
pendence goes®":

9@  p IQ 2 FQ _
—-( D—=
aT Yo m Ox + mo'x = 1P)Q -~ ap*
(VIL1)

[compare with Eq. (I.10), with L, = 0 and D*? = const.)].
The diffusion coefficient D can be calculated with the same
formula (I1.2), and the force eE™(t ) being replaced by a del-
ta-correlated function, (F (¢ )F(t')) = D,6(t" — t), corre-
sponding to white noise,

D=Dr — f T FOF@ ')y%d:‘

= fD,,(S(t — t)—dt =D, (VIL2)

We notice incidentally an important difference between
the Brownian system and the SED system; whereas in the
latter D?? is in general a phase function and becomes inde-
pendent of x and p for the harmonic oscillator only, in the
classical case, due to the infinitely small correlation time of
the stochastic force (i.e., due to its spectral density being
independent of frequency), D is the same constant D, for any
external potential. This causes any equilibrium distribution
in the Brownian case to have the canonical form ~e ~#H,
whereas in SED this form is characteristic of linear systems
only.

The equilibrium solution is obtained also in this case by
separating the Liouville part,

P 9Q 9 _p

= mo*x—= VIL.3
L= m Ox op ( )
from the diffusive-dissipative part,
— L Q=0+ D, % =0, (VIL4)

in the stationary Fokker-Planck equation. Notice that the
equilibrium distribution satisfies the principle of detailed
balance. The problem seems therefore very similar to that of
SED, as can be seen by comparing with Egs. (II1.1) and
(I11.2), the only difference being the specific values of D, and
the friction coefficient ¥, which are related through Ein-
stein’s formula
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2o gr=1L

my B
The (normalized) equilibrium solution is therefore the Max-
well-Boltzmann distribution

(VIL5)

2
0= o] —p(Z . Y| B0 s
2T 2 27
(VIL6)
and the mean energy is given by
E=Ll_r (VILT)
B

From Eqgs. (IV.3) and (V1.7) we obtain now
B _
Z=exp[ — J E(,B)dﬁ] ==
and hence, from Eq. (IV.1),
gE)=1

i.e., the spectral density of states is constant. Equation (IV.2)
applied to this case,

QWHB) =B f O (H.E )e ~ P*dE,
together with Eq. (VIL.6) give

OHE) = 215(5 —H). (VIL3B)
T

No “energy levels” are obtained: Quite on the contrary, the

distribution of @ (E ) is uniform throughout the energy range

(g = 1). Instead of a discrete set of orthogonal functions Q,,

we get a continuous, complete set of orthogonal functions

Q (E), such that

JQ(HE)Q(HE)dH ( )5(E E’).

The inverse Weyl transform [see Egs. (V1.2), (V1.3), and
(V1.7)] of Eq. (VIL.8) does obviously not satisfy a second-
order Schrodinger-like equation; only the complete Q (8),
Eq. (VII.6), is amenable to such a description. Indeed, by
defining

0 (x2) = jdp 0 (x B )P/,

where a is a parameter to be determined below, and taking
the Fourier transform of Eqs. (VII.3) and (VII.4) one
obtains

axé = - mB(L)ZXQ, azQ = - 2TmBZQ~!

the solution of which can be written as a product of the form

0(x.2) =@ (x + 2 (x — 2)
only if
2 2kT
T Bo

i.e., if the Weyl transformation is temperature dependent. In
that case, g is the solution of the eigenvalue equation

2 _
_ 2 @"+mwx2¢)=_1_¢):E¢

VIL
mw?*3? 2 B ( %
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with a unique eigenvalue; the normalized solution is

23\ 1/4 2
o= (ma) B) exp( _ mo sz)
27 4

and the mean energy is correctly given by 1/8 = kT. There
is, of course, no sense in constructing a whole Hilbert space
for only one vector.

(VIL10)

So we see that, though the equilibrium solutions for the
Brownian and the SED oscillators, Egs. (VII.6) and (VIL.8),
respectively, have exactly the same x and p dependence, their
temperature dependence is essentially different, and this
gives rise, in its turn, to a difference in their mechanical be-
havior. The most striking difference is perhaps that related
to the energy spectrum—continuous against discrete—but
there exist other important ones. For instance, a Brownian
oscillator can be frozen by reducing the temperature of the
heat bath to zero; the SED oscillator never does come to a
standstill.

We can now trace the origin of these striking physical
and mathematical differences to the correlation function of
the stochastic force, which by Eq. (I1.3) determines the dif-
fusion coefficient D??. In the Brownian case, the stochastic
force is provided by an immensely large number of classical
particles colliding with the oscillator: These obey the Max-
well-Botlzmann distribution when in equilibrium. It is the
background radiation field obeying Planck’s law which
“quantizes’ the electron: An electron immersed in a classi-
cal mechanical heat bath would, of course, behave essential-
ly as a Brownian particle.

Below we will see that the smallness of the parameter
7 = 2e?/3mc’, the value of which is fixed by classical electro-
dynamics, also plays an important role in defining the quan-
tum behavior of the SED system in nonequilibrium condi-
tions. For an electron 7 is of the order of 1022 s, much smaller
than the usual values of ¥/w? for a Brownian particle.

Viil. THERMODYNAMIC BEHAVIOR: BLOCH’S
EQUATION

From the point of view of SED, the Schrodinger de-
scription is incomplete because it concerns only the isolated,
temperature-independent components of the complete dis-
tribution, without regard to the way in which they combine
in a real, physical situation. Neither the state of thermody-
namic equilibrium nor the way in which this state is attained,
are described by the Schrddinger equation. Hence, to de-
scribe the thermodynamic behavior it is necessary to resort
to statistical mechanics; to study the time variation of a non-
equilibrium distribution it is necessary to resort to quantum
electrodynamics: Statistical mechanics and QED are
brought in to restore the information which was dropped in
order to retrieve the Schrodinger description in terms of pure
states. We shall now recover this lost information contained
in the full Fokker—Planck equation (I1.10). In the next two
sections we shall pay attention to the non-Liouvillian terms
in the Fokker—Planck equation, which refer explicitly to the
interaction of the oscillator with the radiation field, and
study their effects on the time variation of what in QM are
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stationary eigenstates. In this section we are concerned with
the state of thermal equilibrium, which is assumed to be
reached after a long time of such interaction between oscilla-
tor and field.

We recall from Sec. VI that the canonical density ma-
trix corresponding to the thermal equilibrium distribution in
phase space is

p(xx7) = -;— 3 ()@, (x)e =P (VIIL1)
3

Pure states (or Schrodinger) QM works with the ¢, as
separate entities; as we have seen above, this is perfectly ad-
missible also for SED as long as they are not supposed to
represent on their own real physical states. The pure states
represented by the amplitudes ¢, of the pseudostate Q, are
just about as physical as, e.g., the points of the reciprocal
lattice of a crystal, or the Fourier components of a sound
wave; and mathematically they are as useful, because they
can be used as a basis to describe any real state.

Equation (VIII.1) is a hybrid expression, in the sense
that it contains both statistical and quantum mechanical in-
formation. The latter has already been isolated and is fully
contained (to zero order in 7) in the Schrodinger equation for
the amplitudes @,. With the purpose of extracting now the
statistical information and trying to preserve simplicity, we
shall take the unnormalized density matrix

pun(xhxz) Ezp(x,,xz)

= Secx)p (e (VIIL2)
k

as is usual in quantum statistics, and derive it with respect to
B,

IPun

B

Introducing here the Schrédinger equation (V1.15) written in
terms of the Hamiltonian operator, as usual,

A ﬁl
Aot =~ 5%+ V. Jou) = B (e,

= - zk:EWk(xl)fpk(xz)eiﬁEk-

we obtain
Pus = — Eﬁﬂ’k ()@ (x2)e ™ BE:
as T
= — HY g, (g, (x)e 5,
x
whence
apun ’
£ = — Hp, (x,x,), (VIIL3)

The unnormalized canonical density matrix defined in
Eq. (VIII.2) is thus found to satisfy the Bloch equation, with
the usual quantum mechanical Hamiltonian operator. We
must stress that this equation, which gives a complete statisti-
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cal acount of the equilibrium state in phase space, has been
derived here from the postulates of SED.

IX. TIME DEPENDENCE NEAR EQUILIBRIUM

Though up to now we have studied only the state of
thermodynamic equilibrium, the same mathematical appa-
ratus developed for arriving at the usual time independent
quantum results can be used to study the nonstationary solu-
tions of the Fokker—Planck equation near equilibrium. For
this purpose we shall work in x,x, space, in which the sta-
tionary solution was written in terms of the basis ¢, as

1 _
plxx) = — T@u )P, (e PE (VIIL1)
3
Any p of the form
p(x1,x;) = zckc 195 ()i (x1) (IX.1)
kot

which does not coincide with Eq. (VIIL.1) will, of course, not
be an equilibrium solution and hence, the coefficients C, will
in general depend on time. In order to determine the time
dependence of C;, we must demand p(x,,x,) to be a solution of
the complete Fokker—Planck equation (II.10) written in x,x,
space. As a first step we take the Fourier transform of this
equation [see Eq. (VI.2)], to get

L Lo+ LG~ 2LO=0,

where
Lyx,z)= — é—ﬁazax + 2imw’xz,
m

Li(x,2) = émzaz +2iD PPz,

and
Ez(x,z) =2iD*z3..

To complete this transformation we introduce the variables
x, and x,, thus obtaining for p(x,,x,) = Q (x,2),

%’;— + Lo+ Lo)p — %(x: —x)Lp =0, (1X.2)
where

L= —Pg-a+ P —xh, (XY

L= @(51 —a)+ iDﬁﬁ(x[ —x), (IX.4)
and

L,= %D P(x, — x,)(0, + I5). IX.5)

We recall that both L, and L, are of order 7 compared
with L,, and that 7 is a very small parameter. Hence the time
dependence of p is determined to lowest order in 7 through
the equation

"ie-—k[jqo:O,

= (IX.6)
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which can be written out explicitly as
»
ot

where V' = imw’x*. This is just the von Neumann equation
for the time evolution of the density matrix (in the x
representation).

By introducing Eq. (IX.1) into Eq. (IX.7) we obtain

ifi ZCkC; + CC D ()@ (x2)

= 5‘3—(3% & — %[ V) — Vx)lp, ax.7

attainment of equilibrium, as follows from the fact that it is
the equation L » = 0 which singles out the right equilibrium
solution from the infinitely many solutions of I:qp =0. We
therefore expect this term to give rise, near equilibrium, to a
slow time variation of the population of the pseudostates
described by ,, which to zero order is constant in time,

pi = F = |C, )¢ % = |C(0)[*Q (x,0).

The term L,p should therefore fix the lifetime of the pseudo-
states Q.

The term E,p, on the other hand, is a correction to the

. # L ;
= $C.C; [ - B =R+ V) —V (xz)] P, ()@, 06) Liouvillian term, and we must therefore expect it to alter the

= 3 CiC(Ex — ED@i(x)@y (x2).

The second equality follows from the stationary Schrédinger
equation

#
- Edchk + Vo= Ep;e (IX.8)

By multiplying by ¢, (x.)@ {x;) and integrating over x, and x,
we obtain

#(C,C | + CC) = C,C(E, — E,)
whence

iHC, = C,E,

the solution of which is

C.(t) = Ck(O)exp( - %t) (IX.9)

We can therefore write for the density matrix to zero order in
,

pGrox) = T C(O)C ;(O)exp( _ %(Ek _E) )(pk(xl)%(xz)
= Y CLO)C ;O (x )¢ (x2), (IX.10)

where ¢, = exp[ — ({E,/A)t @, satisfies the time depen-
dent Schrodinger equation

al
w BT (IX.11)
at 2m JIx?

as follows directly from Eq. (IX.8). The fundamental equa-
tions of QM for the time evolution, namely, von Neumann’s
equation for the density matrix and Schrodinger’s equation
for the probability amplitude, are therefore deduced from
SED, but only as approximate results to zero order in 7.
They hold good when the system is close enough to equilibri-
um for the quantity #((x, — x,)Lp| to be small compared
with [Lyp| (recall that in equilibrium, L,0 = 0); under these
circumstances, also [L.p| is small compared with |Lep|.

X. THE RADIATIVE CORRECTIONS: LIFETIME
AND LAMB’S SHIFT

The diffusion-dissipation term Ep is responsible for the
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energy values corresponding to the pseudostates Q,, which
to zero order have been found to be E, = fiw(k + 3).

In brief, we expect to obtain a real (coming from L)and
an imaginary (from L,) correction to the exponent of C,(t),
both due to the interaction of the oscillator with the back-
ground radiation field. To calculate these radiative correc-
tions, we use the method of variation of parameters and re-
write Eq. (IX.10) in the form

p= Z(:kc;e Mo (M), X.1)
where fiw,, = E, — E,;and the ¢,’s are slowly varying func-
tions of time, to be determined. By introducing this into Eq.
(IX.2)—which is exact to first order in 7—and taking into
account Eq. (IX.7), we are left with

gt

Seét + éxene M (x)ey (x2)

= (=Lt Lo - x)L) Sercie ™ o e

= —K Yecie “px)e (), (X.2)
where the operator X is
K=K1+K;+K12+K;1 (X3a)
with
TW? D#? i
K, = —xg,+ =—x?+—D"xJ, X.3b
5 et 7 9 (X.3b)
and
7@’ Dw
Ky= ===
+ %D 2xd, Gj=12, i), (X.3¢)

By multiplying Eq. (X.2) by ¢ .(x,)@;(x,) and integrat-
ing over x, and x, we get (interchanging k,/and k', I")

— iyt

(ex] + cxee
= — Ycpcre KKK kT, X4
where the indices &,k ' (/I ") refer to the variable x, (x;).
In order to determine ¢, (¢ ), we must separate it from c;,
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as was done in obtaining Eq. (IX.9). To perform this separa-
tion we note that the time variation of ¢, must be due to
operators acting on @,(x,). But the operators K ; act on both
@i(x1) and g[x,); hence the separation is not so
straightforward.

In a first-order calculation, however-—which is all we
can do, since K is already written to first order in 7—the
problem becomes simple. Let us assume, to simplify the pro-
cedure, that the initial state of the system is described by

p(t = O) = ¢7n(x1)¢7n(x2)»
ie.,
¢ (0)=5,, and c}(0)=35, (X.5)

Since near equilibrium the radiative corrections are
small, we may safely assume that for short times, ¢, remains
of order 1, whereas the ¢, (k+£n) remain small; then to first
order, Eq. (X.4) reduces to

(cil; + éxc)e ™ M = ¢ enckl |K |nnd.
For | = n we have _
(ci6s + cien)e = — ¢ enckn|K |nnd. (X.6)

From Eqs. (X.3) and the properties of the ¢ functions for the
harmonic oscillator, we have

<kn|K,|nn) = <kn|K 5 |nny =0,
<kn|K|nny =<k |Ky|np,
and
<kn|K 3|nny = §,,<n|K 3|m>
whence Eq. (X.6) becomes
il + Excn
= —c,cie [k K ) + B (n K ).

The action of K over the variables x, and x, has thus become
separated: The first term within brackets gives rise to a vari-
ation of ¥/,(x,) and the second one is responsible for the
change of ,(x,) and hence of the time variation of ¢, or c,,
respectively. We may therefore write

Ciln = — ¢, {n|K5|nd8,,
and
G = — c cne " k| K| nd.
Taking k = n in the second of these equations we get
¢, = —<n|Ki|n)e,
whence
e(t) = exp( — <n|Ki|mde).
We shall write this result in the more convenient form

iSE,
c,(t)= exp( — P t), X.7)
where
r= Tl — 2Ren| K, | (X.8)

n

is the decay constant (such that p, ~e ~ ") and
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OE, = ilm{n|K,|n)>
is the correction to the energy E, [see Eq. (IX.9)].

(X.9)

Tocalculate I',, we take the average of the real part of K,
given by Eq. (X.3b),

(n+1)

Re(n|K,\|n) = ——4— +

and substitute Eq. (I1.9) for D”P, thus obtaining
r,= ﬂ(l teg _ Eo),
fi\l—e¢
wheree=e P =¢

(X.10)
— ﬁa)/kT.

According to this result, the radiative decay of excited
states is accelerated by raising the temperature of the back-
ground field. It is interesting to note that at 7> 0, we have
I, > 0, which shows that the ground state is not a stable state
at positive temperatures. At low temperatures I, decreases
exponentially towards zero: I'y~rw’ ~ "/*T whereas at
very high temperatures it grows linearly w1th T:
Iy~(ro/2R)kT.

At T =0, Eq. (X.10) reduces to
r,= fﬁﬁ(E,, — E)=r1wn =nl, (X.11)
or, since for a harmonic oscillator

> Knlx|k>|? =

k<n

Knlx)n — T3P =;i

we may rewrite this expression as
r =—= nlx|k>|?
=2 kg"|< xlk > |2,

This result coincides with the first-order prediction of quan-
tum electrodynamics for the radiative decay of excited states
in the dipole approximation.?

(X.12)

To calculate SE, we take the average value of the imagi-
nary part of K,. For this purpose we must first calculate D™
from Eq. (IL.2); we recall that in the Markovian approxima-
tion this equation reduces to

ax(t)
ap(t'st)

From the solution of the nonstochastic equation of motion
for the oscillator we get

D =¢ f dt’ CEmOE (22 (X.13)

ox@) _ 1 s NP
aﬁ(t,;t)—;n;exl’[ 10t — t')]sinew(t — )

which introduced into Eq. (X.13), together with Egs. (I1.4)
to (I1.8), yields

D*P—z”ef do' ) (m)fd:

Xexplio'(t —t") — dro*(t — t ) sinw(t — ¢")

THh °°d, @'
)

=_17_ o 1 + 7w
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w0 — o" 1 +e %%
(@ — @' + Pt 1 — e~ B’

(X.14)

where the factor % was introduced to take account of the one-
dimensional character of our problem.

The above integral diverges logarithmically: We are
meeting here the well-known divergence encountered by
QED in the calculation of the Lamb shift. The origin of this
divergence lies in the spectral density assumed for the zero-
point field, pi(w) ~®’, which being nonintegrable implies an
infinite energy density for the vacuum. We may in principle
make the integral convergent by introducing a cutoff to ac-
count for the relativistic effects left out in our simplified
treatment (pair creation, finite velocity of the particle, etc.);
but since we lack a reasonable theory to evaluate these ef-
fects, we would rather resort to the customary renormaliza-
tion procedure typical of QED calculations. First note that
the integral is divergent even for the free particle, i.e., in the
limit @ = 0, which implies an (infinite) correction to the self-
energy (to the mass, in our nonrelativistic version) of the
particle. Since this is not a contribution to the Lamb shift
proper, because it must be already included in the experi-
mental mass value, we subtract it and thus obtain

oo 13 2 _ 2
sz — Th J dw’ w [ @ w
T Jo 1+ 70"l (0* — 0") + To'w”

— " ] 1+¢€
o+ o] 1 —€
Th “ w"
- "_wz d&)l—'—’
2w o 1 + o™

% (1 + r'w?) — " 1+¢€
(@07 + 7o) (@ — ") + Tw'o?] 1 —¢ ’

which is already convergent. In evaluating this integral we
take account of theresonanceatw’ = w, neglect the unimpor-
tant terms of order 72 and simultaneously introduce a cutoff
at the frequency w,, which we do not specify further but may
estimate to be of the order of 2mc¢?, the onset of pair creation
effects. We thus obtain

D¥— _ ﬂaﬁ(]naﬁ)lﬁ

£ 2 w/l1—¢€

= F'(h&)l te
27m w/1l—e¢€

_ TR (2N ey (X.15)
21rm\ a)/l—e

where € = exp( — f#iw) is to be evaluated at the frequency of
the oscillator. We can then write for the energy correction
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8,E,=6E, — 8E, (v = 0) = (n|D ¥xd |n>

w
- (1n—‘)<n|V"xax|n>ﬁ
2mm w 1 —¢
or
wc — Phw
8,E, = (1n—)<n|v2V|n>1_ie—. (X.16)
2rm\ @ 1 — ¢ Pl

We have written \72FV instead of the one-dimensional expres-
sion ¥'”, to give to the final result a form which is correct
regardless of the number of dimensions. Equation (X.16)
shows that each level of the harmonic oscillator suffers a
shift due to the interaction with the background field,” and
that this shift grows with temperature. Since the level shift is
the same for all pseudostates, because

{n|7*V|n)> = — 3Imw?®(in three dimensions) is independent
of n, the Lamb shift does not alter the radiation spectrum.

At T =0, Eq. (X.16) reduces to

8,E, — ﬁ(ln&)mvw . (X.17)
(43

2mm

On comparing this result with the renormalized resuit
given by QED for any bounded problem*:

E.
SE, — i(ln <
2rm\  (AE>

where E_is the cutoff energy and {AE ) is an average transi-
tion energy, we find a most satisfactory agreement. On the
other side, at very high temperatures (8—0) Eq. (X.16) pre-
dicts any energy correction proportional to temperature.

Yty i, X.18)

X1. CONCLUDING REMARKS

In the preceding sections we have seen that all funda-
mental equations of quantum theory, namely, Schrodinger’s
equation for ¥, von Neumann’s equation for the time evolu-
tion of the density matrix, Bloch’s equation for its tempera-
ture dependence; the relationship between these equations,
together with Wigner’s distribution and, on top of it all, the
corrections predicted by (nonrelativistic) QED, can be ob-
tained in a quite simple and intuitive form from the postu-
lates of SED for the case of the harmonic oscillator. This has
been accomplished without having to adjust any free param-
eter, since the two parameters contained in the theory,
namely 7 and 4, are fixed, the first one by classical electrody-
namics and the second one by the zero-point energy of the
background field. The theory predicts results in remarkable
agreement with quantum theory, even the structure of the
radiation spectrum and the lifetimes of excited states, despite
the necessary existence of discrepancies between the two the-
ories; we are in front of a theory which differs from the usual
one in both its physical content and its extension, but which
reproduces all experimentally confirmed results and gives a
well-defined physical interpretation of the formalism of
quantum theory. It is most remarkable that a seemingly clas-
sical theory which starts with the equation of motion
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mx = F(x) + mrX + eE (1) (X1.1)
with an appropriate stochastic field E (¢ ), in fact describes a
quantum system, including the QED corrections.

As it is, however, the theory is neither finished nor free
from difficulties. Perhaps the two most important points
which remain to be solved for the theory to be considered a
serious alternative to the usual treatment of the oscillator—
not to mention the extension to more general atomic sys-
tem—are those related with the analysis of the density in
terms of pseudostates and with the divergences caused by the
correlation function of the field. Let us conclude this paper
by discussing them briefly.

In connection with the development of Q {3 ) in terms of
Q (E,), our problem is to find the physical justification for the
decomposition in terms of Boltzmann factors; as pointed out
above, the whole quantum mechanical description in terms
of pseudostates (or excited states, in the usual language) rests
upon this decomposition, allowing for the introduction of
the formal energy parameter £ which happens to be restrict-
ed to discrete values. Only after assigning a physical mean-
ing to this parameter and justifying Eq. (V.1) on first princi-
ples will we be able to say why one must use the usual
formalism of quantum theory instead of the more direct one
of SED. At present, we know that SED contains quantum
theory in a well-defined limit, but we still ignore why.

As to the second point, we already remarked that the
divergences occurring in the calculation of D** (leading to
the Lamb shift) come from the structure adopted for py(w),
Eq. (I1.6), which implies an infinite energy density for the
field. Since this spectral density is derived from first princi-
ples (essentially from the demand of Lorentz covariance for
the field?), it is not a simple matter to alter it; in fact, this
problem remains totally open. However, the advantage of
SED over more conventional treatments of the Lamb shift is
twofold: First there is the conceptual advantage of having
clearly identified the source of the divergence; second we
have obtained an UV divergence which is less severe than in
usual nonrelativistic QED; in fact, in SED a single mass ren-
ormalization suffices to yield a finite (though somewhat
large) result. The reason for this lies in the extra w*-depen-
dent denominator introduced in going from p, to g, Egs.
(I1.6) and (11.8), when eliminating the runaway solutions of
the equation of motion. Thus SED seems to open a new path
for the study of one of the most important problems of quan-
tum theory, namely, its divergences.
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An analog of Szegd’s formula for asymptotic Toeplitz determinants is proved for Hankel determinants.
The proof uses a set of recurrence formulas developed for polynomials orthogonal on a finite segment of
the real line and some properties of the Jost function associated with those polynomials. The techniques of
inverse scattering theory are used to calculate the correction terms to the asymptotic formula. The results
are valid for weight functions that have a finite number of jump points and an absolutely continuous part

that is unbounded.

I. INTRODUCTION

In this article an analog of Szego’s theorem on Toeplitz
determinants is proved for Hankel determinants. The theo-
rem on Toeplitz determinants was first proved by Szego' in
1952. Since then much work has been done to weaken the
assumptions needed to prove the theorem and to prove it
from different points of view.* Here we wish to prove the
theorem for Hankel determinants. This was first done by
Hirshman® using Banach algebra techniques. Our proof is
much different and allows one to extend the theorem to spec-
tral functions that are not absolutely continuous. The proof
closely follows the one given in Ref. 8. The theorem is proved
using a new set of recurrence formulas developed for polyno-
mials orthogonal on a finite segment of the real line and some
properties of the Jost function. Using the techniques of in-
verse scattering theory, one is easily able to calculate the
correction terms to the asymptotic formula.

We proceed as follows; First (Sec. ) the theory of orth-
ogonal polynomials is briefly reviewed and the equations of
inverse scattering theory are introduced. Then, in Sec. II1, a
special case of the theorem is stated and proved. Following
this (Sec. IV) we find the correction terms. Finally in Sec. V
the theory is extended to spectral functions that are not abso-
lutely continuous.

Il. Preliminaries

Suppose p(4) is a nondecreasing function with infinite-
ly many points of increase on a segment [a,b ] of the real line
such that

b
5= [ Ardp()

exists for all n. We are to find polynomials p(1,r), such that

(IL.1)

(i) p(4,n) is a polynomial of precise degree n in which
the coefficient of 1" is positive,

b

(i1) f pAmp(A.mYdp(A )=56(nm), mn=0,1,2,..
Using standard orthogonalization procedures, one finds
p(i’n)—__ [Hn— lHn] -1
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So S 8 - o+ 5,
5 S 5 - ' : Shi
X n>0,
Sn_1  Sn : ’ ‘ M P
1 A A"
(IL2)
where
S5 5 5 5,
S 5, . R
H,= n>0.(IL3)
S Sha : oot S2n

[Here H.,=1; thus p(4,0) = H }/* = s,/.] The coefficient of
A" in p( ,n) can be determined from Eq. (I1.2) and is

H, _\? .
ko= ()", n=ot-
(n) 7

kil

(I1.4)

In Ref. 10 it was shown that the polynomials satisfy the
following two term recurrence formulas:

sy = 22 {(Z B — )]pedn — 1)
a(n)

n LP(E”_—I_)] n=12 (L5)
Z
and
_ a(ew) [HZn—1)
wzm = a(n) { VA
_ ey, _ _ An— 1
+ [(1 a(w)z)Z B(n 1)]17( n )},
n=1.2-, (I11.6)
where
_ K@= 117
a(n) Ko (IL.7)
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b(n)= J.b/lp(/{,n)zdp(/l ), (11.8)
B(m)= M, (11.9)
a()
and
A=a()Z+1/Z)+b (). (11.10)
Here it is assumed that
lima(n)=a(x)>0, limbn)=>b(x), b(n) real
T T (IL11)
and
WZ,0)=p(A,0)=K (0)> 0. (I1.12)

Considering p(4,n) and ¥(Z,n) as two components of a
function @ defined by

Ay
®(Zn)= (SEZ’;))) (IL.13)
Equations (I1.5) and (I1.6) can be condensed to
D (Zn)=C()®(Zn — 1) (IL.14)
where
Z—B(n—1) /Z
C(n)= ) [ .
W |11 —amy/a(0y1Z—B(i—1) 1/Z
(IL15)
Two other useful solutions of Eq. (11.14) are
_(p(Zn)
PAZm)= (;A(Z,n))
and
(Z,
®(Z,n)= (z EZ "g) (IL17)

where the components of these vectors satisfy the following
boundary conditions:

lim [p,(Zn)—Z *"| =0, |Z|s]l, (IL.18)
lim ¢ (Zn)| =0, |Z|<1, L19)
lim |¢_(Zn)—(1—Z)HZ ~"| =0, |Z|>1, (I1.20)

n—s 0

Notice from the boundary conditions and the recurrence for-
mulas that

p.@Zn) =p(/Zn)y=p(Zn),|Z}|=1. (I121)

It can be shown'® that @.(Z,n) and @_(Z,n) are linearly
independent for |Z | = 1,Z5~ + 1. Therefore,

K(0)

DP(Z,n) = m

X AZYPAZn) — f(Z)P(Z,n)],"°
|1Z| =1, Z#+1. (I1.22)
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Here
F2)=f2Z)=f(1/2), |Z|=1, (11.23)
and
Z)

= M 1 n _ a(w) . *(Z

= k0z o VEN T gz LRI ENT
with

Y*(Z,ny=2Z"Y(Z,n).
fAZ) is the discrete analog of the Jost function.

(I1.25)

In order to proceed further, it is convenient at this point
to introduce the techniques of Banach algebras. Thus, let 4
denote the class of functions integrable on —7<8<#7 such
that if g is an element of 4 then

g0)= S g&)e

K=o

(11.26)
with

lell= 3 [8&)] < w.

K=—

Let A * and 4 ~ denote those functions in A of the form

g@)= S gK)e**
K=0

(11.27)

(11.28)

and

0
h@)= Y h&K Ye'k? (11.29)
K=—«
respectively.

Let|g]bethenormon 4,4 *,and 4 -, then4,4*,and 4 -
are Banach algebras."

If

2

| atny

I1.30
a(o0) (I1.30)

+wm—u@<%

then the following properties can be proved"

(1) Zf.(Z ) and p.(Z,n) are analytic inside the unit circle
and continuous on it,

(2) Zf(Z) and p.(Z,n) are elements of 4 *,

(3)If £(Z) = 0for |Z| < 1, then the zeros are

(a) simple,

(b) real,

(c) finite in number. Finally

@ Iff(Z)=0for |Z| = 1 then the zeros

(a) must occur at Z = + 1 and/or — 1,

() Zf(Z)/d(Z)eA .
Hered (Z)is

(@) equalto 1 if f(Z)5£0 for |Z|=1,
(b)equalto1-Z iff(Z)=0forZ=+1,
(c)equalto 1+Z iff(Z)=0atZ=—1,
(d)equalto1—Z?* iff(Z)=0atZ=—land Z=+1.

(I1.31)
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It follows from the above conditions that the spectral
function with respect to which the polynomials are ortho-
gonal can be written as'

oA )dA, b(0)—2a(0)<A<b (0)+2a( ),
dp(A)=y ,
Y pbA—A)dA, A not as above
i=1
with
1 )di = S )sinddd 1132
T RO a2
and
i= —l@— (I1.33)
K©Qyf, 4)

Here A, denote the roots of £,(Z) for |Z | < 1. It follows from
property 4b, Eq. (I1.33), and the Wiener—Levy theorem
that™

in( ZDLLE ey

2 (11.34)
Often one is given the spectral function instead of the

Jost function. Using a modification of the Poisson-integral

formulas, one can construct the Jost function from the spec-

tral function in the following manner"
T Z—Zw(Z—Z)

Z[[(1-2z)
i=1

f(Z)=d(Z)

Here
l+ot+ 1L,n+1) won + L,n+2)
2 1 1 2, 2
detl 1ol = | 0Tt el 2 2

on+3n+1) wn + 3,1+ 3)

Xexp[ - L jﬁ n (e ’)fd(z')lzK(0)2>

a( 0 )sing’

X(M)dﬁ ] (11.35)

expid' — Z

Z'=e" |Z|<]1,
A'=a(oZ'+ 1/Z") + b (),

where the Z’s are the jump points of the spectral function
and are determined from Eq. (I1.12)."? 7 , means the prod-
uct over the roots of £.(Z ) for Z,;20 respectively.

From Egs. (I1.14), (I11.18), and (I1.19)

pZm) = 3 A(nD)Z" (I1.36)
If one defines”
_ _ nem 42
w(n,m)= 1/277ﬁZI1[(1 sS(Z)1Z ~
4 ipzyw, (11.37)
i=1
sz)y=LE&) _ SZ) |1Z | =1, 11.38)
LMZ)  f2)

where the Z . are the zeros of the £,(Z ) inside the unit circle,
then it can be shown that'*"*

Now from the recurrence formula (II.14) and boundary conditions (II.18)!%¢

a(ny/a(w)=Ann/A(n—Ln—1),

A (n,n)= [det(1 + @), ,/det(1 +0) ], (I1.39)
w(n + 1,n + 3)
o(n +2,n +3) (11.40)
1+wn+3n+3)
(IL41)

Another formula we will need connects two different sets of orthogonal polynomials. More precisely, given two infinite
systems of orthogonal polynomials { p°(4,n)} and { p(4,n)} with associated spectral functions dp°(4 ) and dp(A ) respectively, and

writing

plA.n) = ﬁ: K (n,0)p°(A,1),

i=o0

what is X (n,n)? Taking
anm) = [P dp(3) — do')1,
one finds®'®

K (n,n)= {det[1+4¢]5~'/det[1+q]5}""

where
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(11.42)

(11.43)

(IL.44)
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1+4(0,0) 4(0,1) 0,2)
q(1,0) 1+4(1,1) ¢(1,2)
det[1+413= ' ' '
q(n,0) q(n,1)

q(0,n)
q(1,n)

1+g(n,n)

(11.45)

From the recurrence formulas and the orthogonality property, a(r) is related to a°(n) in the following manner:

a’(n)/a(n)=K (n+1,n+1)/K (n,n),
where it is assumed that

a(0)=a(wx).
Il.STATEMENT AND PROOF OF THE THEOREM

In this section we prove Szego’s theorem on Hankel
determinants. Here it will be assumed that Zf.(Z )0 for
|Z | <1. This is equivalent to assuming that the spectral func-
tion with respect to which the polynomials are orthogonal
has only a bounded absolutely continuous part [see Egs.
(I1.32) and (I1.33)]. This assumption will be removed in Sec.
V.

Theorem: If

1 3 1— a(n)’ — ) .

(H ngln{ o) + |B(n—1)|}< o (IIL1)
and

(2) Zf(Z)#0 for |Z |1, (I11.2)
then
=3 a(w)
g (a(n)z)

S =A(=D] & 2

=ln< o >+m§::1m|y(m)|, (II1.3)
where
y(m)=(1/2m) rln[Zf(Z)]e"'"gdG

m>1,Z-——e"’, (I11.4)
and
C— = a(oo)

)| Sovre

—exp— " [TEO ) 1y

=exp— (1/4m) —ﬁln( 2(00)SinG’ )d9 (I11.5)
A. Remarks

From the properties of Zf.(Z ) listed following Eq.
(I1.30) and the assumption (2), we find

™

—(172) | In[(Zf(Z))e™%d8=0, m>1.
Taking the complex conjugate of the above equation, adding
it to Eq. (II1.4), and then using Eq. (I1.32) gives an expres-
sion for y(m) in terms of the spectral function

yim)=— 1/241111 ( a(6)

) e~ ™%d08,m>1.  (IIL.6)
sinf
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(11.46)

(I1.47)

r

The right-hand side of Eq. (I11.3) can completely be written
in terms of the spectral function if one uses Eq. (I1.35). The
more familiar form of the theorem

lim H,,[

H--» 0

C_Jrt (£

_ﬁ( — 1)] >1/2
Ha()

CZ

exp i m[1/2]|7,,|* + Ina()’]
m=1
(I1IL7)
can be obtained by exponentiating both sides of Eq. (I11.3)
and using Eqs. (I1.4) and (I1.6).

B. Proof of the theorem

Since Zf.(Z) is an element of 4 * and Zf(Z )7#0 for
|Z | <1, the Wiener—Levy theorem says that

mZfZ)) = S rmZ", |Z|<], (111.8)
o
where
mzol Ym)| < . (IIL.9)
It is a consequence of Eq. (II1.1) that™
as2m | In[Zf(Z)] In(Zf(Z)Y Z"'d8
= Salym|:, Z=¢". (111.10)

n=1

In Reference 10 it was shown that

[a( )/ K (O))Y*(Z,n)—Zf.(Z) uniformly in norm, and in
Appendix A it is shown that Eq. (II1.2) implies that

Y+ (Z, n)#O for |Z | <1 for all . Therefore,

e a(®) . a(w) ., Z-
Jim 277' . [K( Y @n )] (K(0)¢ (Z")) 46
=——f In[Zf(Z) N[ ZFZ)] Z'd6, Z = °.

277' —

(I1L.11)

The left-hand side of the above equation can be rewritten in
the following way:
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|52z | Kz m) za0

27r K(0) K(0)
_ L f i [ 'fp:‘((‘Zz’;)) ] [‘?FO)) /*(z,n)]da.(m.lz)

Adding and subtracting In(1 —Z')? to the above equations,
T [ %7 Y *
2r)_» L Y¥Z,n) (1-2)

+% f_: [—L(Z_”)_ ]ln(l ~Z)d6, Z=e®

Y*(Z,n)
(I11.13)
Now let
[ ! ] be the zeros of M,
n,d a(n)
%
{ I ] be the zeros of w,
n+1j a(n + l)
{Z'..} be the zeros of 22", (I1L14)
' a(n)
and
a(n)=K (0) H “((°f’)) (II1.15)
From the recurrence formulas we see that
* n
LalCZ) <—-——Z 1’(’1”’)) =1 (IIL16)
a(m) lz=o a(n) Z—0
Now
¢*(Z,n)' 2n 1
= . 1Z|=1, I11.17
v*(Z,n) Z’l zZ-1/Z,; 2] ( )
and
’ 2n Z .
['/’*(Z,n)Z ]=Z M 1z|=1, (IIL18)
¥*(Z,n) =Z,,—2Z

where we have used the fact that the coefficients of ¢*(Z,n)
are real'® and consequently the complex roots must come in
conjugate pairs. The second term in Eq. (II1.13) can now be
written as

f CNZ )iz
—at Y*(Z,n)
1 T 2n Zn,i ,

e _m;[zmi_z]ln(l—z )do,

1Z|=1, (I11.19)
which is, from Eq. (111.14),

_ (‘”*(1 n) Y1 ”)) (I11.20)

a(n) a(my /

We now show that

ol [ R el oo

488 J. Math. Phys., Vol. 20, No. 3, March 1978

_ 1 (M1¥yr@Emnz vMZ,n)
= 27TL,[ I Zn) ]ln[a(n)(l —zy %

|Z | =1. (I11.21)
Since Zf ’j (Z) has no zeros for |Z |< 1 neither does Z "p(4,n)"

for all n. Thus, using Eq. (II1.18), the left-hand side of Eq.
(111.21) is

2n+42 p(A N/
- Z 1n[z(,,+ ) i(—“*”—)] (111.22)
j= a(n)
Likewise the right hand side of Eq. (II1.21) is
2n *(Z,, N
~SY In —‘0—(_‘—?—)—] (111.23)
=1 an)(1—Z ?,,,0)

In Appendix B it is shown that Eq. (I111.22) = Eq. (I11.23).
The first term in Eq. (II1.13) can be recast into the following
form:

L[ [EEnZ ], _wzn |y,
2wl Y*(Z,n) an)(1—-2Z?)

5

o) (1—=Z)Z'~'p(hj—1
a(—1) UHZ))

Xln[ )]de. (I11.24)

Solving Eq. (I1.5) for 1/Zy{(Z,n — 1) and substituting the re-
sult into Eq. (I1.6) yields

WZmy=p(m)— 2 Zpin—1). (I1L.25)
a()

Letting Z—1/Z in the above equation and subtracting it

from the original equation gives

WZ,n)—¥(1/Zn)

a(n) 1

=(1-Z2%) —— Zp(/ln 1); (I11.26)

a(eo
multiplying the above equation by Z "/a(n) and then using
Eqgs; (I11.25) and (III.15) yields

l/’*(Z»n) __ZZn ¢*(1/Z’n)
a(n) a(n)
( Zz) a(”) Zn-1 p(/l n— 1) (IH.27)

a(oo )2 an—1)
Now dividing the above equation by ¥*(Z,n)/a(n) and sub-
stituting the result into Eq. (I11.24)

53T FEE

TP M
a’(n) wm Y*/Z)) d Zl=1. 1I1.28
Xln__a’(oo)[l A ———_1//*(2') ] 0 |Z] (111.28)

It is clear from Eq. (II1.18) that only the pole at Z=0 con-
tributes, and from Eq. (II1.27)
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2¥*/Zm)|  _ _a@y T11.29
z a(n) Z=0 a(eo )2' ( )
Substituting this into Eq. (I11.28) yields
-_3 N PR
= j;Zjln[l [1 0(00)2”
-3 2jin 2 (111.30)

=17 a(ew)?
Letting n— o in the above equation and Eq. (II11.20) and
then using Eqgs. (I11.15) and (II.23) gives the desired result:

a(oo)
2SI
ln[f_(l)(_—g_(_l)_)] + 5 mlrem)

IV. COMPUTATION OF THE CORRECTION TERMS

If one wishes to include the corrections terms, then Eq.
(I11.8) becomes

]an ( C? )n+l
Hua(w)

=In det[l+w]j+1+£1n[ﬂl)i—c_f;(:ﬁ]_]

SR E TR 3 minfa(e)],

m=1 m=1

(IV.1)

where det[1 + w];7, | is defined in Eq. (I1.40). The above
formula is most easily derived by returning to Eq. (IIT) and
using Eq. (I1.41):

G
j; " a(fy
AG—1j-1) 1
= — -1 ————_—-—- ——
L | Ao ) ' 2 T
3| S D= +H(-D)]
+ [ LEOLLHC DL av2)
Equations (II 4) and (I1.7) show us that
K(]) Zj___H 2n+2 V.3
I mm, H[K(,._l)] K () (Iv.3)
and from Eq. (11.39)
< A(— 1‘,1'—1)21‘ _ _Amn2n+2 ‘ (IV.4)
j=n+1 A(/:i) det[1+w]:+l
Therefore,
InH,+In{K (mA ¥(n,n)a"(=)]"*"
%IH[W] +Indet[1+w]2,,
+ 3 Zlrm|* av.5)
m=1

Now, using Egs. (I1.7) and (I1.41), we have
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LI | 1 & 1
K?*(n)=K (0 —_— =] — Iv.6
(n)y=K( )I;[ G H I=I o (Iv.e)
and
i g Aw)
A (n,n) _i=1;l+1 —_a(z')2 . av.n
Therefore, from Eq. (I111.6),
K (07 A (n,m)a"(0) = %ia(oor"—z. (IV.8)

Substituting this into Eq. (IV.5) gives the desired result.

V. EXTENSION OF THE THEOREM

In this section the requirement that Zf.(Z )40 for|Z|< 1
is removed. The final theorem is: If

a(n) _
saf|1- e L DI} <o, V1)
then
&, a(wo) _ Kn+1,n41)
,,z:: 2nln( a(n)z) ,;:: 2nin K (n,n)
__1yn+1 &ﬁ(—l) _L
+]n[( D (d(l)d(—l)) cg]
+ 3 mipom)|?, (V.2)
m=1
where
s V[T (oAVAEZNN ime
Pom)= Z.f_vln( sing’ )e 40
m>1,Z' =e (V.3)
_ 1 (7K (O)o(W Y (Z')N
c"—eXp[ ar _,,ln( a(o0 )sind’ )dg] V4

and # is the number of jump points in the spectral function
(the number of zeros of f(Z ) for|Z| < 1). K (n,n) is given by
formula (I1.42) with

s = (PGP G Q- GY. (V)
Here
dp*hy=0(4)|d (Z)|"dA. (v.6)
To prove the theorem, first define
- 27
rozy= @ __1-2% v.7)

d(Z)ih 7(Z,— Zyr(Z — Z)

where the Zs are the zeros of £,(Z ) for |Z | < 1,d (Z ) is de-
fined in Eq. (I1.31), and the 7 , are defined following Eq.
(I1.35). Notice that Zf°, (Z)|, _, is positive; therefore,us-
ing Eq. (I1.32) and the fact that

y_,(1—2Z)
7(Z,—Zyw(Z—-Z)

one finds

=1 for

1Z) =1, (V.8)
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a( o0 )sing
7K 0)|f%(Z)?
Let {P°(4,n)},{a°(n)}, and {b°(n)} be the orthogonal poly-
nomials and coefficients in the recurrence relation generated
by the spectral function ¢°(1)dA. Since the interval of ortho-
gonality is the same, @°(c0 ) =a( o )and b %(o0 ) =5 (o0 ). Itcan
be shown?’ that

& | ey a(n)?
,,;”[ 2(0 )

O(n)z
:Z;”[ a(co)

Therefore, the proof from Sec. III applies and

od)|d(Z)|*=

=d'(1). (V.9

+1BG-]]

(V.10)

+B(n— 1)1]<oo

i 2nin a"o(oo) :
ot (ny
L[ =,
e
It follows from Eq. (V.7) that
Ly -n=(-ir FO LD
Substituting the above equation plus Eq. (I1.46) into Eq.

(V.10) yields the desired result. To find the correction terms,
one follows the procedure presented in Sec. IV.

(V.11)

Z m|Y(m)|*.

(V.12)

VI. CONCLUSIONS

We have proved an analog of Szegd’s theorem for Han-
kel determinants. The theorem was proved using only some
new recurrence formulas satisfied by polynomials ortho-
gonal on a segment of the real line and certain properties of
the Jost function. The proof was motivated by a similar proof
for polynomials orthogonal on the unit circle. The theorem
has been extended to Hankel determinants derived from
measures that are not absolutely continuous.
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APPENDIX A

Here we show that if Zf,(Z )0 for |[Z|<1, then
¥*(Z,n)540 for |Z |< 1. This is done by showing that

1 f” Z"Z"Y(/Zm)
27 J_a |FUZ) K (0)/a( )" ’

n<2m, Z=¢é",

(A1)
and

A7 IEHZmA__ g6 (ag)
27 )2 2K OF/a(w)

Note that Z"y¥(1/Z,m) is a polynomial in Z of degree 2m.
From the recurrence formulas (I1.5) and (I1.6), it is easy to
show that the coefficient of Z?™ [K (2m,2m)] is
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a0 )

a(i) ’
which is positive. Equations (A1), (A2), and (A3) imply that
Z"Y(1/Z,m) is a polynomial orthogonal on the unit circle
and that

Z¥Z T"WZmy=y*(Z,n)
is not equal to zero for |Z|< 1.2
To prove Eq. (A1) let Z—1/Z in Eq. (11.22), then sub-
stituting the result into Eq. (A1) using Eq. (I1.23) yields
1 (™ a(ew)Z™ "
2 ) L KO)1/Z—2Z)

K (2m,2m)=K (0) 1‘"[ (A3)

(A4)

« VW Zm) —f(ZW/Zm)] 40

AS
@) (42
which is
1 (7 a(e)Z™ " (//‘(I/Z,m)a,t9
-KOY1/Z-2Z) [f(Z)
1 (T a(w)Z™ " ¢"(1/Z’m)d6. (A6)
20 - KOY1/Z-2) f(2Z)
Letting 6-»— € in the first integral gives
_ (7 _ae)Z" " gdZm) 4
20 J_ o K(OWNZ—-1/Z) f(Z)
1 (T a(e)Z™ ‘*”'(I/Z’”’)de. (A7)

_KO0Q1/Z-2Z) f(Z)
Using the recurrence relation (I1.5) and (I1.6), Eqs.
(I1.17), (I1.18), and (I1.19), and the properties of p.(Z,n) list-
ed following Eq. (11.30), we find

v(Zm)=B@m ] i(("?—)zn+1+0(z"“) (A8)

i=n+1 al)
and
v(/Zm= I "(("';)(1 VZ)Z"+0@Z" ).
i=n+1 afl

(A9)
Substituting these results into Eq. (A7) and using the fact
that Zf.(Z )0 for |Z|<1 yields Eq. (A1). To prove Eq (A2),
substitute in Z~"(Z,n) in place of Z~" in Eq. (A1). Then,
following the same steps that led to Eq. (A7), we find

L[ sz
2 J 7 |[(Z)’K(0)/a(0)
1 7 a(o)
- KONZ—-1/2Z)

W/ ZmYAZn) 4g
£Z)

L[ sz 2 4
2 ) KOY/Z-Z)(Z)

>

n>m, Z=e". (A10)

Equation (A2) can now be obtained using Egs. (A8),
and (A9) and the fact that near zero
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WZn)~ K(O)ﬁ "(°°)z-" (A1)
i=1
and from Eq. (11.23)
Zf(Z)~a(o )f[ ai(“;) (A12)

APPENDIX B

We now prove that Eq. (II1.23) is equal to Eq. (I11.24).
Letting Z—1/Z in Eq. (I1.5) and then subtracting it from the
original equation yields

L _ — (1 _ 72 P(’{’n)
Zl/}(z,n) ZY1/Zny=(1—~-2Z )——Z . (B1)

Now multiplying by Z"/a(n)(1 — Z?) gives
v(Zn)  ZTr1/Zn) 2 "PAm) (B2)
a(n)y(1—-2Z7) a(n)y(1-2? a(n)
Using the notation of Eq. (II1.15) we see from Eq. (I11.16)
that

2n ¢*(Z(n,f)’n) . ﬁZ n P(/l(n,l)’n) (B3)
- i) .

v am(l=2Z2,,) = a(n)
Since the leading coefficient of p(A,n)/a(n) is 1, the right-
hand side of Eq. (B3) can be written as

= ﬁ ﬁ (Z(n.ﬂ_z;n,x))- (B4)

=1K=1
Interchanging the order of the product
2n 2n

= H H(Z(n Ky~ Znih (B5)

K=1i=1

which is, using Eq. (II1.15),

2 e W/Z i)
=HZ(,,f'K)——;——.
K=1

a(n)
Letting Z-—1/Z in Eq. (I11.6) and then multiplying by
Z7*2/a(n+1) yields
VA 2n+2 ¢*(I/Z’n + 1)
a(n+1)
:Z 2n+4-2 1/’*(1/2,’1) + [[1_ a(n+ 1)2
a(n) a(w)?

X Z ¥+ pff(n’;) (B7)

(B6)

] Z7'—B (n)]
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thus at a zero of p(4,n)/a(n)
P*(1/Z ok ypn+1)
a(n+1)
1/Z ,
_zzgp P2 an) (B8)
a(n)
and Eq. (B6) becomes?!
anp2 V/Z yn+ 1)

2n
=11z
Kl—:Il o a(n+1)
Writing Eq. (B9) out as in Eq. (B4) and then changing the
order of the product and again using the fact that the leading
coeflicient of p(4,n)/a(n) is 1 gives the desired result:

2n l!/*(z(n,z),n) _ nt2 p(/{ (n + 1,]'),n)

= Z”’1
A a1 - Z3,,) fgl‘*”) a(n)

2n42
Z %)

(BY)

'V. Grenander and G. Szegd, Toeplitz Forms and Their Applications (Uni-

versity of California Press, Berkeley, 1959).

M. Kac, Duke Math. J. 21, 501 (1954).

'I. 1. Hirshman Jr., J. Anal. Math., 14, 225 (1965).

‘A. Devinatz, Illinois J. Math 11, 160 (1967).

‘M. E. Fisher and R. E. Hartwig, Adv. Chem. Phys. 15, 333 (1968).

*H. Widom, Am. J. Math. 95, 333 (1973).

"H. Widom, Indiana University Math. J. 21, 333 (1973).

*J. 8. Geronimo and K. M. Case, J. Math. Phys., submitted for publication.

°G. Szegd, Orthogonal Polynomials, American Mathematical Society, Vol
23, (Amer. Math. Soc., New York, 1939).

], §. Geronimo and K. M. Case, Trans Am. Math. Soc., submitted for
publication.

YG. Baxter, J. Math. Anal. Appl. 2, 223 (1961).

"When using Eq. (11.10) to calculate Z given 4, one uses the branch of the
square root that makes Z=0at 4 = .

K. M. Case, J. Math. Phys. 14, 916 (1973).

"@G. S. Guseinov, Sov. Math. Dokl. 17, 596 (1976).

K. M. Case, J. Math. Phys. 17, 1703 (1976).

*K. M. Case and S. C. Chiu, J. Math. Phys. 14, 1643 (1973).

K. M. Case, J. Math. Phys. 15, 2166 (1974).

*J. 8. Geronimo, Trans. Am. Math. Soc., submitted for publication.

¥J. S. Geronimo and P. G. Neval, in preparation.

*Ya. L. Geronimus, Polynomials Orthogonal on a Circle and Interval trans-
lated by D. E. Brown, edited by I. N. Sneddon (Pergamon, New York,
1960).

*'Note that Eq. (IT11.16) and the fact that the leading coefficient of

p(A,n)/a(n) is 1 implies H Z'n,K)=1.

J. S. Geronimo 491



The rqaster analytic function and the Lorentz group. IIl.
Coupling of continuous representations of 0(2,1)

Debabrata Basu

Department of Physics, Indian Institute of Technology, Kharagpur, India

S. Datta Majumdar

Department of Mathematics, Visva-Bharati, Santiniketan, India
(Received 16 November 1977)

The Clebsch~Gordan problem for continuous representations belonging to the principal series of O(2,1) is
treated by a method developed previously for the coupling of a discrete and a continuous representation.
The values of the complex variable x occurring in the fundamental differential equation of the problem are
restricted to lie on the unit circle, and the Clebsh-Gordan coefficients are identified with the Fourier
coefficients of solutions of this equation. If j belongs to the discrete class there is only one acceptable
solution of the second order equation. But, if jij,j all belong to the continuous class any two
independent solutions of the equation give possible Clebsch-Gordan series. The problem of
orthogonalizing the solutions in the latter case is solved and the normalization factor is determined using
the Sturm-Liouville theory of differential equations. The Clebsch~Gordan coefficients generated by an
orthogonal pair of solutions become automatically orthogonal. To determine the j values appearing in the
reduction, a product state x™, is expanded in a series of the coupled states 8m(x) by means of the

Burchnall-Chaundy formula followed by the Sommerfeld-Watson transformation.

1. INTRODUCTION

The problem of constructing the unitary irreducible re-
presentations (UIR’s) of the three-dimensional Lorentz
Group O(2,1) or its covering group SU(1,1) was solved by
Bargmann' many years ago. Following this work a number
of authors?”’ investigated the Clebsch—-Gordan (CG) prob-
lem for the group. In the first two papers'®!! of this series (I
and II), we have shown how a single “Master Analytic Func-
tion” can be used to solve two apparently unconnected prob-
lems, finding the O(2,1) content of O(3,1), and the CG series
and coefficients (CGC’s) for O(2,1). In the second paper"!
the CG problem for two discrete representation or one dis-
crete and one continuous (nonexceptional) representations
was solved by a novel method based on the theory of hyper-
geometric function (HGF). This method is now applied to
the more difficult problem of the coupling of two continuous
representations. We shall consider, in this paper, only con-
tinuous nonexceptional representations, i.e., representations
belonging to the principal series. The CGC’s obtained by us
for continuous j, j,,/ are absolutely convergent for all values
of the magnetic quantum numbers and exhibit a strong re-
semblance to those of the rotation group. There are also oth-
er good features not posessed by the two other expressions
available in the literature. While Holman and Biedenharn’s*
(HB’s) expression for the normalization factor (NF) is too
complicated for the use, that of Wang’ involves unsightly
fourth roots of factorials instead of the usual square roots.
These may be partly due to their evaluation procedure which
essentially consists in summing a divergent series with the
aid of a convergence factor. HB’s expression, besides, is not
analytically continuable to other cases of coupling. The
three expressions for the CGC (including ours) are all differ-
ent and are not transformable into one another.

From general considerations and also from the analysis
of Basu'? it appears that for the extension to be possible the
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hypothetical variable x should lie on the unit circle. The
CGC will then become identical with the Fourier coefficient
(FC) of an appropriate solution of Eq. (2.4) of 11, namely,

[x(l —x)zzi(% + (1 —x)

XUr+jp+1—m+x(G,+j+m—1)]

X i + _____(j‘_m)iz
dx x

+ (i + mYyox +jiGr + D+ 0.+ 1) —jG + l)]gjm =0
(1.1

Unlike the cases considered in II, the solutions of the above
equation for continuous j,,j, are not square-integrable and
cannot normally be expanded in Fourier series. A rigorous
justification of the procedure adopted can be obtained by
using the theory of generalized functions.'* But as this is not
very relevant in the present context we shall only present the
main results of our investigation here.

Although the coupling of continuous representations is
mathematically more involved, it has the great advantage
that the orthonormality (ON) of CGC can be established by
using the familiar Sturm~Liouville theory of differential
equtions. The simplification arises from the form of the nor-
malization factor (NF) for states belonging to the contin-
uum. ™ For the principal series of representations this is a
phase and drops out completely when a CGC is multiplied
by its complex conjugate in the orthonormality condition

S Cronfsmim:)Colia s, ms)

m,

=6,5(Imj — Imj’). (1.2)

The ON of CGC thus becomes identical with the ON of
solutions of Eq. (1.1) on the unit circle. The NF for states of
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the principal series, as pointed by Barut and Fronsdal,'* can
also be taken to be unity. We have achieved some simplifi-
cation by using the alternative value throughout. This is not
possible when one (or both) of the representations coupled
belongs to the discrete class.

We first find the solutions of Eq. (1.1) which give the
correct CG series for a particular final /. The solution of Eq.
(1.1 to be taken is

1) _ —~J (1)
g =x""¢,)

=X ~j2(1 — x)fn +j—J
if j belongs to the positive discrete class, and

g(S) —=x I+ me(S)
zxvj.—#m(l _x)il +j—J

XE(=j+mjpy—ji—jh—h—i+m+1x) (149

if jbelongs to the negative discrete class. This conforms with
HB’s observations that if any of the three /s belongs to the
discreteclass D “or D -, then thereis only one set of CGCfora
given m. If on the other hand j belongs to the continuous
class D¢, then any two independent solutions of Eq. (1.1)
correspond to possible CG series, and one is led to the prob-
lem of choosing from the infinite possibilities a pair of solu-
tions which are orthogonal on the unit circle. The CGC’s
generated by this pair of orthonormalized basis functions are
then automatically orthonormal. The problem of orthogon-
alization has been solved in Sec. 4 by a simple analytical
method. The exact agreement between the expressions of NF
determined in Secs. 3 and 4 by two widely different methods
provides a good test of the correctness of our results.

After the selection of the appropriate solution of Eq.
(1.1) pertaining to a given j, we have to determine the NF for
the CGC and the spectrum of j values. These are obtained by
expanding x* * ™ in a series of functions of the type €;m bY
means of the Burchnall and Chaundy formula®® and then
applying the Sommerfeld~Watson transformation (SWT).

2. Construction of the Basis Functions and the
Fourier Expansion

The group SU(1,1) [covering group of O(2,1)] consists
of all 2 X 2 complex matrices of the form,

o
uz(ﬁ s detu=1.

The UIR’s of the group can be considered in the space D, of
homogeneous functions of two complex variables (&, £ z)
transforming according to the fundamental representation
of SU(1,1)when D, is realized as the space of functions of a
single complex variable z = (£,/£>), the operator T, of the

2.1
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representation is given by,

T,f() =Bz + )bf(fjﬁ)

The generators of the group can then be represented as dif-
ferential operators of the form,

[ d . d (8 )
=i\ —-z—), J=i— Ji={z——]}
J tz(j zdz) J laz ’ zdz

The generators (2.3) can be exponentiated to the pr1nc1pa1
series of UIR’s only if the complex numbers z,, z, or equiv-
alently x = z,/z, are defined on the boundary of the unit
circle.”?

(2.2)

(2.3)

In the O(2) basis the product states are monomials,

j ‘2 —_— ‘h 1 '. —_— .|0 . m
m222) = 2y = X

my,m, =0, x é) + 1, (24)

Asj, arein the principal series of UIR’s Rej, = Rej, = — 4
and the numbers o = j, + j, + 1 and j, =j, — j, are, there-
fore, pure imaginary.

The coupled states g;,,, on the other hand, are the bases
of UIR’s of the group appearing in the reduction,

TiXTh=Y e0T), 2.5
J
and these are of the form,
= Z+ ”'zgg. x). 2.6)

The function gj,,, is a solution of Eq. (1.1) which on substitu-
tion g = x ~¥#(1 — x)” =/ = 1F reduces to the standard HG
equation,

x(1 = x)F" + (% + (1 = x)Go —
+ (i + m)(is — HF = 0.

m 41— 2)F".
2.7)

Since j can be complex, there are, in general, two linearly
independent solutions of Eq. (2.7) which must be chosen so
that they satisfy the requirement of orthonormality. The pair
of solutions,

g =x""1—x)" I 'F(—j—m,jo—jijo—m+ 1;x)
(2.8a)
g2
=x "M —xy 1 —-x)°"" 1
XEF(—j+ mjo—jifo + m + 1;x™) (2.8b)
as shown in Sec. 4 satisfy
€2:85) = N 06,.5(Imj — Imyj’). 2.9)

The Hilbert space H under the reduction (2.5), therefore,
decomposes into two mutually orthogonal subspaces leading
to a pair of orthogonal CGC’s.

The solution g{?) can be expressed as a linear combina-
tion of the first and second solution of the HG equation,
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ImX

FIG. 1. The contour X.

g(z)zr[m—jo;io+m+l ] )
! j+m+ 1, —j+ml

_e,‘ﬂ(]'”, m)r{jOFm+ lym “jo;io+m+ 1 (5)
m —jo+ Ljo —jfo +j+ 1 17

(2.10)
(5)

where g'>) stands for the second solution of the HG equation

and is gjiven by Eq. (1.4).

However, when j belongs to D *, the values of m are
bounded above or or below and Eq. (2.7) admits only one
independent solution which is given by Eq. (2.8a) for D * and
by Eq. (1.4) for D ~. There s, therefore, no duplicity for repre-
sentations belonging to D *+.

Since, in Eq. (2.4), /., and m are fixed, the monomials
x™ can be regarded as representing the bases in the product
representation. Further, m, (or m,) takes all integer or half-
integer values on the real line. The nonnormalized CGC’s
are, therefore, the coefficients of Fourier expansion of g},

and g¢¥

jm

oo
gn= >

m, = - o

allx™; r=12. 2.11)
The FC’s can be expressed as an integral over the unit circle
S (see Fig. 1) in the clockwise direction. Thus,

1
=

dx x 27 m 1 —x)0 !
2mi Js

XE(—j—myjy—jjo—m+ 1;x). (2.12)
The singularities of the integrand are the branch points at
x = 0 and at x = 1. With the standard choice of the cut for
the HGF the integrand in Eq. (2.12) is single valued and
analytic in the entire x-plane assumed cut along the positive
real axis from zero to infinity. If, therefore, we choose a
closed contour Z, as shown in Fig. 1, then by Cauchy’s
theorem,

%x‘jz*mzfl(l_x)a—j~l

P

XF(—j—m,jo—jijo—m+ 1; x)dx = 0. (2.13)
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Since the integrals over the circular arcs ¢, and o, near x = 1
vanish, we have

agh): L_J‘x/j"—"’"’l(l—x)”"f’]
) 27l Je

XE(—J—myj,— Jifo — m + 1;x)dx, 2.149)

where C stands for the “Pochhammer part of X formed by
the small circle of radius € around the origin and the part of
the branch cut from € to 1-0.

Comparing Eq. (2.14) with the standard single loop
Pochhamer contour integral representation of the general-
ized HGF, we obtain

= et

g—J
“r }
o+ my+ I —my—j+ 1

—h—myjo—j, —j—m
X F, .

(2.15)
Jo—m + lzjl_m2~j+1
Similarly,
asrzl)vm —e 21'1Tmza(1r)m“ o 2.16)

The ,F,‘ functions appearing in Egs. (2.15) and (2.16) are
absolutely convergent for all values of m,,m,,m.

We shall also require the function g;)

(1.4) and its FC,

as given by Eq.

) =a’ .17

3

where the superscript .# corresponds to the simultaneous
interchange j,«»/,,m <> — m, ( -transform).

3. THE CLEBSCH-GORDAN SERIES

For positive m we expand x” * " in a series of the form™*

(@,(b).

A ma N WY —
= L T s

—jz—mzyc‘i'n—l"’n

X 3, (1—-xr
a,b
X F(a + n,b™% n;c + 2m1 — x), 3.1)
witha=1—o0c—m, b= — 2, c=2(1 — o). This can be

written as a sum of residues at j = o — n — 1 of the analytic
function
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~j—mjo—j—o+j+l,—o—j
=r FOf ),
—-Y—-1ll—0—-m,—-2,
(3.2)

where
—jz—m23_0+j+ 19_0-'—_]
}Fz(O) =,F, s (33)
— 2l —0c—m
Sim®) =1 =) F(—j—mjo — j; — 251 — x).
Let us now enclose the polesatj = 0 — n — 1 by acontour C
consisting of the infinite semicircle on the left half of the j-

]
Y

xj; + m;

e sinmy, | S
= — D x + _f — + de F
sinrj, ;‘ ! v V2 /

1 i g
+ —fT15" djf[
27i

—jo—h—hti+Wo—jht+j+l,—j—mj+1—m
_]o“m+ly*]o_m+1:-2]—1»2]+1
—Jo—h—Jo+i+ Vo—jjoti+ 1, —j+mj+m+1

l+m—ju,l4+m+j,—2/—1,2/+1

plane and the line Ref = — 1. Since C contains additional
polesatj= — m + k,(k =0,1,2,---) and since the integral
over the semicircular part vanishes, we have,

wim— L oovari g S D4

271 j= —l@ar—3/2)

where D ;* stands for the residue of y(j) atj + m = &,
(k=0,1,;m — 1).

when j, and j, both belong to D the duplicity phenom-
enon discussed in the preceding section makes it necessary to
transform the rhs of Eq. (3.4) into a form involving the basis
functions g, and the corresponding FC’s (or CGC’s).
Using the appropriate Slater identity'® to express ./, oc-
curring in Eq. {3.4) in terms of the complex conjugate of the
FC’s of g and g‘¥, we obtain after some calculations,

:l PracT e 1)5(,,1.)sz8](‘:,,)

]eiﬂ(zj; + I)E(Z)Xj’g@ 3.5)
m, jm* ’

By introducing 7(j,m) which is 1 for discrete jand — cot#(j + m) for continuous /, the discrete and the continuous parts

can be given the same analytic form:

—m

o+ 1y cn 172 4 dee . P s e —1/2 4 . PN i
X = ( > o iS5 djb ‘)’(anz,/,ml,mz)x’g},‘.J +i 21T d) b OGgfagsmi,ma)x'g),
= —{or —

where

b(l)(leij;ml,mZ)

= 7(j,m)e™ " {

h—mA4+ L —jo+j+1j+1—m
X}FZ ’

—jo—m+1,—ji+j+1—m,

b (z)UlJzJ;mlymz) =e&*™mp (l)(j]JzJ; —my, — ny).

(3.6)

_j2+m2!_j0_m+lzio_m+lp—zj_l’—j+mzi+m+1;'—jl+j+lhmz

(3.7

The NF’s for the CG series and coefficients are obtained by comparing the coefficients of direct and inverse expansions. If

A 9 (r = 1,2), is the NF, then

M _
A= —e
29T

) [ [—jo—jJa+j+ Vjo~fi—Jo+j+1, —j—m,j+1—m]]1/2
in(j, + 1/2) r

(3.8)

“jo_m+1;jo—m+l,—2j_l,2j+l

(2) _ 1)
A/m —Aj~—m

These are in complete agreement with the NF’s determined in Sec. 4 by a different method. Using Eqgs. (3.8), (2.15), (2.16), we

finally obtain the normalized CGC’s,
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Cljijosmi,ms) = A Da,

(3.9)

forjlying in the continuous spectrum. For the discrete spectrum the CGC’s are givem by C, when jbelongs to D * and by C, when

j belongs to D~

4. THE ORTHOGONALITY OF THE
EIGENFUNCTIONS AND THE CGC’s

The first step in the derivation of the orthogonality con-
dition for the CGC’s consists in constructing a suitable sca-
lar product (f,g) with respect to which the UIR’s 7", appear-
ing in the reduction (Eq. (3.6)) are required to be unitary.
This is easily achieved by adopting Gelfand’s definition’® of
the Kronecker product of two UIR’s and constructing the
corresponding invariant bilinear functional satisfying,

TS T L) = (fuf) “4.1
where
T.f@2) = Bz + @)z, + D) (.2),,
L= 2tB 4.2)
Bz, +a

When j,,j, are in the principal series of UIR’s and according-
ly z,,2, are allowed to vary on the unit circle (z, = ") a
bilinear functional satisfying Eq. (4.1) exists and is of the
form,

(ff) = §d4.df @2 )f@nz)z) iz %!
According to our choice of a basis of the Hilbert space

fi =217 "2g,(x) 4.4)
Using Eqgs. (4.3) and (4.4) it is now easy to verify that the

functions g,,, in the coupled representation should be orth-
onormalized according to the scalar product,

&jm8im) = f(z)”gjm(x)gﬁn (x)d¢, 4.5)
where x = ¢® — ) = ¢, The orthogonality of the eigen-
functions g{(x) of Sec. 2 can now be established in the tradi-
tional way by explicit evaluations of this scalar product with
the help of Sturm-Liouville theory of the second order dif-
ferential equation.

(4.3)

We shall first show that if j is in the principal series the
functions g¢)),¢%?) constitute two independent orthogonal
sets.

Using Eqs. (2.8a), (4.5) and the standard formula
F(a,b;c;z)

c,b—a
=F[ (—2)"%F@l—c+al—b+az")
bec—a

ca—b
+ (—2) " °Fbl —c+ bl —a+bz"),
ac—b

(4.6)
and following the method of Sec. 2 the integral over S can
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now be expressed as a single loop Pochhammer-integral over
C (Fig. 1). The Eq. (4.5) then takes the following form,

1 1
g

1 —jO —m,m _jo
=ei1r(m—o’—1)r

_j{} —j9 "jo +j + 1

X(—1) L Bimibym ¥~ "l

+ ei‘n’(jn—a— 1)1"

l—jo—m,jo—m:l

—j—mj+1—m

(-9 f 8700y, @7
C
where
Bim(x) = (1 —x) TITF(—j — myo — jijo — m + 1;x)
@.8)

The integrand in the second term on the rhs of Eq. (4.7)
which is regular at x = Ois continuous across the branch cut
and the integral therefore vanishes. The only contribution to
the scalar product therefore comes from the first term and
we have

(D) o)y
jmIS jim
—Jo—m+ 1m —j,
—emMm—o-b G(',j;m), (4.9)
—jo—ds—Jo i+ 1
where
G (' j;m)
1
"2 flim| (@7 — 1) f dx X "G, ()b (X)
€--0 €
b [ 78,08, x| (4.10)

Here *‘s” stands for the small circle of radius € centered at the
origin.

The integrals appearing in the rhs of the above equation
can be evaluated by using the differential equation satisfied
by the eigenfunctions ¢,,, and ¢,,, and we have

1
J = () (D)
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lim d -tained in the previous section [Eq. (3.8)] in an entirely differ-
x—1 5 d¢jm ¢ﬁn s
e —— (1 —x)*| dm gk Pim p ent manner. Similarly,
G§=IW+/+D x x > gy
 jm 8 jm

jo — m + 1 N

— —.i‘_’ 4.11) = —jemmo- ‘)f dxd fn(x)¢j.m(x). (4.15)

(o—m+1) c

Although g@ and gV have branch points at the origin, the

— (2™ — 1)eh—m+1 integrand as before [Eq. (4.7)] is regular at x = 0. The inte-
J;xf Gjm(X)B 3 (X)X = G mal (4.12)  gral therefore vanishes,
Combining Egs. (4.10), (4.11) and (4.12), we finally obtain m8im) = 0.
G (' jim) The CGC’s C,(j,,,/;m1,/m,) of the previous section are then
i d the coefficients of Fourier expansion of the orthonormalized
= Zesinjo lim[( 1 — x)2(¢h P eigenfunctions,
GG +] + D i ™ dx
S =40 (4.16)
)
= fim dx 1/ (4.13) satisfying
FOLE) = 8,50my" — Imyj). 417)
Following 1, the rhs of Eq. (4.13) can now be evaluated and The orthogonality condition for the CGC’s now follows im-
we obtain after some calculations mediately from that of the product states and Egs. (4.16) and
J('ln)’ 1(51")) (4.17):
= 42— _
zcl(jlgilli;mlva)Cg(leZJ’;ml,mZ)
—Jo—m+1jo—m+1, -2 — 1,2+ 1 = §,5(Imj’ — Imj). (4.18)
xI
— o —Js —Jo+J + Vjo—jdo+J+ 1, —j — mj + 1 — m.! Whenjliesin the discrete spectrum, the orthonormality con-

dition can be derived essentially in the same way, and we

% 8(Imyj — Imy’) for Imy,Imj’>O. (4.14)  have
The NF as given by Eq. (4.14) agrees exactly with that ob- ;C Grdeimisma)C o smisms) = 8. (+-19)
|
APPENDIX
Ta derive Eq. (3.5), we transform the rhs of Eq. (3.4) by using the identity
Qo3sy  Toasy  Qois Qpszss  Xogss Qo5
F045) =T FQo1n—r }Fn(2.14). 7ZB))
As3sy  Oogsy  Ayps Ay Boy 1—Pp
This gives
—'jl +m1,].1 —m, + 13 ’“jo +l+ l; _jo_jy _-2}‘211 —a0—m
3};*2(0) =r ]31’-'2(2)
J+l—m —fp—my—j—m —o+j+Ll4+m—j,—ji—j+m,
—jl + myj—m, + 1, ‘jo+j+ 1, —jo—‘jy —‘2j2’1 —0—m
-r ]}Fz‘”, (A2)
—ja+myl +m _j09j0—my —o—}J, _jl +J +1—m,1l —Jo—m
where
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.—m—'—wl,—‘ . 1. l— . S T S T )
3F;“=3F2[’2 et L=t "’] BF;“=3F2[”JT'"2+1’ fo—d—tm (A3
—Jo—m+1,—j+j+1—m, —Jotm+1,—-j—j+m,
The ,F,(1) functions appearing in Eq. (A2) are invariant under the Legendre transformation j— — j — 1, for instance,
—o+j+1 ] . [ —0o—j ] :
r ] g Ny = i OC_i 1.
i B =D T R (A4)
Substituting Eq. (A2) in Eq. (3.4), folding the integral about the real axis, and using the relation (2.10), we have
) ) 1 —1/2 + i
xXHm=N'p/ - dj
; T 2m) o n /

r[—jl+ml,/'l—m1+ L—o+j+ L —jo—fi—jot+j+ ljo—jho+ji+ L, —j—mj+ 1 —-m
—ht+my —jot+tm+lj—m —jo—m+1, —ji+j+1—my,—2/— 1.2/ + 1jo—m+1

1 /24w
+ — dj
2mi J~ 12

r[—j1+m1;i1_m1+1,—jo—j,—jo+j+lJo_on+j+1,_U‘js_j+mxj+m+1
—h=My—jot+m+ljo+m+ljo—m+ 1, —jo+m —ji—j+m,—2—12+1

where

Y:e"”(’"*'"’if_mﬂm djr[—j1+m1,/'1+ml+1,-jo—j, —otjH L —o—j—j+mj+m+ 1]
—jz“mZ,‘jo+m+ly_j0+m+1x_jl_j+m2’_2j_1’2j+1

2mi ) 12

o 1 =~ /240w
[ ]

2mi S 12—

—j1+mnfx —m, + 1"0_ja —j+’n9_j0 _}
—jz_mz,_jo+m+ly_jl_j+m29—2j_1

jr (1
|t

jI}FZ(Z)xj)g;)ZH) +7,

(A5)
}1;‘2( 2 )xj:g},f'n)

],F;W,-m(x). (A6)

Replacing f;,,,(x) by x et "’fjm(x)/ and the ,F,(1) function occurring in Eq. (A6) by
—Jotm+ 1, —ji—j+m—0o+j+1 —htm,—0—j,—o+j+1
r N & ,

—2j17_0+m+1xj2+m2+1
we now have

Y= Mr[—jl+mlzil_ml+l]fl/2+ioo dj]“[

21 —ja— My, +my + 1 —1/2—ie

—j+m)—f0_j)_o._j’_0'+.}+}
— 2%, —o+m+1,~-2j—1

—2jly—a+m+1

3.F2‘°’/x —jo+ m/]“m(x)'/'

(A7)

The integrand in this expression is seen to be the # -transform of y(j) of Eq. (3.2) having simple polesatj = o — n — 1 butatno

other points inside C. Therefore,

Y = oo ST o — o myj = my _ gimy STz (o, gom,

siny, sinj,

(A8)

Using this value of ¥ and the expressions (2.15) and (2.16) for the FC’s, we obtain Eq. (3.5).
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Remarks on the Hamiltonian path integral in polar

coordinates
Wolfgang Langguth? and Akira iInomata

Department of Physics, State University of New York at Albany, Albany, New York 12222

(Received 7 July 1978)

Problems associated with the derivation of the Hamiltonian path integral in polar coordinates are
examined. First the use of the ill-defined asymptotic formula of the modified Bessel function is pointed
out. A procedure is proposed to justify its practical use, in which the mass m is complexified and the limit
Imm—O0 is taken after path integrations. Hereby a restriction is imposed on the class of allowed
potentials. The difference between the Hamiltonian path integral so obtained and the phase space path

integral formally defined is also discussed.

1. INTRODUCTION

Feynman’s path integral approach to quantum me-
chanics' has been considered unique in that the propagator is
described by a path integral,

K@ rsr) = f exp(%fTL(r,t)dz)gr, (1.1

which rests on the Lagrangian of the system rather than the
Hamiltonian. In recent years, more attention has been
placed on the Hamiltonian path integral formulated in phase
space,’

Kr'r';r)= ff exp(% J‘f [pr— H(r,p)]dt)@r.@p,
(1.2)

whose equivalence to the Lagrangian path integral (1.1) has
been shown only in Cartesian coordinates. Since there is no
general proof** for the canonical invariance of the Hamil-
tonian integral (1.2), it is as yet unknown to what extent the
Hamiltonian formulation is valid. The first question we have
to clarify would be as to whether the equivalence between the
Lagrangian and Hamiltonian integrals can be maintained
under point canonical transformations. A general expecta-
tion is that the Hamiltonian path integral (1.2) on any co-
ordinate basis would yield a desired propagator if an appro-
priate effective Hamiltonian, which may or may not be the
same as the classical one, is chosen.”® While the effective
Hamiltonian coincides with the classical one in the Carte-
sian formulation, the same is not true, as we shall see shortly,
on the polar coordinate basis. The transformation from Car-
tesian to polar coordinates is certainly an important example
of point transformations. In the present paper we shall be
concerned with problems in deriving the Hamiltonian path
integral of the form (1.2) from the Lagrangian path integral
(1.1) specifically in polar coordinates.

Edwards and Gulyaev’ calculated the Lagrangian path
integral (1.1) for a free particle in polar coordinates and ob-
tained the radial propagator for the / wave,

K" )= f exp[—;— ‘r (%mi’z— _l_(_l;%rz)hi )dt ]gr,
(1.3)

“Present Address: Physikalisches Institut der Universitit Wiirzburg,
D — 8700 Wiirzburg, Germany.
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by using the asymptotic form of the modified Bessel function
for lZ> 1,

1(2)~(2m2)~ Vexplz—3(F— Dz '], (1.4)
Following the recipe Garrod? used in the Cartesian formula-
tion, Peak and Inomata® derived from (1.3) the Hamiltonian

pathintegral for the / wave in the presence of a central poten-
tial V' (r),

K,(rrn= Jf exp(% JT [pr'—H,(r,p)]dt)_@r@p

(1.5)
with the effective Hamiltonian,
1 I+ D
Hop == (r+ L )y o) (1.6)
2m r

Furthermore, without expanding in partial waves, but using
the asymptotic formula (1.4) repeatedly, Peak and Inomata®
expressed, after a step of formal replacements, the total
propagator (1.1) in the form,

K(r11,91/’¢rr;rr,9/’¢1;7_)

- A1,1{11 Q)N f exp(% f P+ +psb—H. g)dt )
N—-1 N
X [ (drd6dé) [ (dp,dpAp,) (1.7)

with the effective Hamiltonian,

Hg=p;/Qm)+(p5—4#0)/2mr)

+(p5— 37/ (2mrisin®6 )+ V (r). (1.8)

The path integrals (1.3) and (1.5) have been proven useful for
such simple systems as a harmonic oscillator, a charged par-
ticle in a uniform magnetic field, a rigid rotator, and a parti-
clein an inverse square potential,® the three body problem® '
and the Aharonov-Bohm effect.!! An expression similar to

(1.7) had been used earlier by Gutzwiller* for the hydrogen
atom problem. Indeed, the Hamiltonian path integral (1.7)
appears to be the correct form in polar coordinates.* A care-
ful examination, however, shows that the asymptotic expan-
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sion formula (1.4), on which the derivation of (1.3), (1.5),
and (1.7) is based, is not valid for the range of the argument
pertinent to quantum mechanics. Accordingly, the expres-
sions (1.3), (1.5), and (1.7) will be groundless. This odd situa-
tion does not occur in evaluating the statistical density ma-
trix. The problem stems from the fact that the imaginary unit
is involved in the exponent of the path integral (1.1). It is
indeed the same fact that makes Feynman’s formulation of
quantum mechanics pathological.” In Sec. 2 and 3, we at-
tempt to justify the practical use of the asymptotic formula
(1.4) in quantum mechanics and to save most of the results
previously obtained via the formula (1.4).

There have been proposed a number of methods to pro-
vide a mathematically sound basis for the Feynman path
integral. Naturally we expect that some of them would be
helpful to resolve our problem as well. The recent proposal
of DeWitt—Morette! to reformulate the Feynman path inte-
gral by means of the notion of prodistribution seems most
promising and must be applicable to our problem. However,
since we follow the conventional time-division method of
path integration, we borrow Nelson’s idea'* to derive the
Hamiltonian path integral in polar coordinates within the
framework of Nelson’s theorem, as extended by Faris.'* An
unrigorous justification for the case of an inverse-squared
potential is given in the Appendix. In Sec. 4, we discuss the
difference between the Hamiltonian path integral so derived
and the phase space path integral formally defined, empha-
sizing the importance of the role of symmetry involved.

2. THE HAMILTONIAN PATH INTEGRAL IN
POLAR COORDINATES

Feynman’s path integral (1.1) is customarily defined by
the limiting process
K(@'y;7)

== li"l A J‘ exp[ . NE L ( > ) l d 2 d s
. R €. r.,— dr Tyl
N-voo N 1i J=1 / € 1 N=d
(2'1)

where Al\ =(m/2mifie) P, e=t,—t; \=7/N,
Ar=r,—r1,_, 1;=1(t)), r,=r(0) and rN_r(r) For a particle
of mass m in a central potential the Lagrangian in the j-th
interval can be given in polar coordinates as

L(rydr/€) =sm(r +ri_ )/ — (mry; _/€)cos®; — V(r)

2.2)
with
cos®, = cosfcost; | + sindsing, _ cos($; — éi_1) (23)

Substitution of (2.2) into (2.1) yields the path integral ex-
pressed on the polar coordinate basis,

K(rll’eff’¢" ’8 ¢ T)
C N (]
= lim ANJexp[% S (—5—”1( ,_1)—' rEi_

N—ow j=1

X cos®; — eV(rj))] H risinfdrdfdg). (2.4)
Use of the partial wave expansion formula"’
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exp(zcosd) = (/22)> $ @1 + DP,(cosd)], . 1,2(2)

I=0
@2.5)

given in terms of the Legendre functions P,(cosd) and the
modified Bessel functions 7, , ,,,(z), enables us to express

(2.4) in the form,
K(rll’e 'I’¢ I’;rV,e !,¢ ’;T)

o0

=X 21‘, K(r'rin)Y (@4 )Y (6" ¢") (2.6

1=0n=—1

with the radial propagator of the / wave

K75 = lim G4y 10 (2mrf )"2
J—

j=1
xexp 222+ ) - L v ()
— 1
X1y Tt ),-Izll Gdr). @D

On the other hand, employing another expansion formula,"

expizcosd) = § exp(ivO)L,(2), (2.8)

V= - o

we can also express the total propagator (2.4) in a different
fashion,

K(r“,g II,¢ ”;rl,e I’¢ I;T)
im

A ' \
= lim (4m™4 ( » e Vr
o (4mh)Ay ,[I, XP el - g V),

X 3 expluf6;— 6, )]

]

ol )
X Ev: exp[vAd;, — &; )] exp( ry;_ sindsing; ,)

x Iv,( Ty sinsing, ,) [ (*sin6drdods).
itie (2.9)

If useis made of the asymptotic formula (1.4), the results (2.7)
and (2.9) can be brought to the forms (1.5) and (1.7), respec-
tively. However, it must be pointed out that the asymptotic
formula (1.4) is valid only if*’

Rez >0, or |argz| <7/2. (2.10)

The argument of the modified Bessel functions /,(z) in-
volved in either (2.7) or (2.9) is purely imaginary, i.e.,

Rez = 0, or argz = 7/2. Evidently the use of the asymptotic
formula (1.4) for the polar coordinate calculation of the
quantum mechanical propagator is improper. The asymp-
totic formula of 7,(z) for large |z| in the range

— 37/2 < argz < 7/2 is available in the form,"”

I(2)~Qmz) ~ Vexplz — (v — Dz + Qmz) ~?
Xexp[ —z + §(v? — Dz + in(v + D] (2.11)

Under the restriction (2.10), the second term of (2.11) can be
neglected, and the formula (2.11) is readily reduced to (1.4).
Therefore, it appears to be a proper manner to use (2.11) in-
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stead of (1.4) for the integrations of (2.7) and (2.9), where
Rez = 0. Unfortunately the asymptotic formula (2.11) does
not lead us to any quantum-mechanically significant
propagator.

To resolve this problem, we wish to suggest the follow-
ing procedure. First we introduce a complex mass M in the
place of the particle mass m so that the argument of the
modified Bessel function may acquire a positive real part;
namely, we write

M =m(1 + in), (2.12)
where m = ReM > 0, and mn = ImM such that
Rez = m7|z/M | > 0. (2.13)

As aresult, the second term of the asymptotic formula (2.11)
drops off for large |z|, and the use of the formula (1.4) be-
comes proper. After completing the path integrations, we
take the limit 7—0 in order to recover the propagator for a
real particle. Whether the exchange of the orders of the limit-
ing processes 7—0 and N— oo is legitimate or not will be
discussed in the next section. Here, conjecturing that it is so,
we proceed to apply the proposed procedure to the path inte-
grations in {(2.7) and (2.9).

In calculating the path integral (2.7), we choose the
imaginary part of the mass to be positive, i.e., 7> 0. Conse-
quently, the argument of the modified Bessel function in
(2.7) has a positive real part,

(/(Fie), (2.14)

which enables us to use the asymptotic formula (1.4). Until
the form of the potential is specified, the path integrations
cannot be explicitly carried out. However, with the help of
the asymptotic formula (1.4), we can immediately rewrite
(2.7) as

Rez=myry; _

K, r;mm)
o M N i ’( )
=(FY) 1 = [ M
(rFy* lim ( Zm'ﬁe) J CXP[ 7 f 2
1( 4+ D ) ]N—l
-V dt dr), 2.15
e @)ar | T @» 2.15)

where ImM = m7 > 0. In the limit 7—0, we would arrive at
the / wave propagator (1.5) in quantum mechanics,

K, (7' ;7)) = lim K,(r",”;7;7).

7-+0

(2.16)

The path integral (2.9} involves two modified Bessel
functions, but the arguments of both functions can be made
simultaneously to carry positive real parts insofar as the
imaginary part of the mass is taken to be positive. Thus, by
choosing 7 > 0, we can utilize the asymptotic formula (1.4)
to expand both of the modified Bessel functions in (2.9).
Using the following relation,

exp( % (Ar)l)

ihe \1/2 [ i €
(277M) f,w“p[ # (p "t )]dp
217
in addition to the asymptotic formula (1.4) in (2.9) leads to
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K (ru’e N,¢ Il;rl’e 1,¢ !’T;,,I)
= (r*r'"*sind’sind ")~ 12 lim (2mf) >V

N+ oo

X X EV\ ffjfl] exP( %(pf“’f + 19,

Bdlyef Vi Vs

+vAdg, — He)} Nﬁ' (drdfds) ﬁ dp), (2.18)
Arp=r—r,_ 46;=6,—6, |, 4¢;=¢;,—¢;_,,

Hy=p}/QM) + @} — DF/QMry; )
+ (V= D#/QMry; _sinfsin,_,) + V(r). (2.19)
Again we expect that the above path integral (2.18) will yield
in the limit %,—0 the correct propagator for a real particle,
K(rlf’e II,¢ ll;r',6 §,¢ ,;T)
= lim K("',0"¢",r,0',¢" 1n).

7n—0

(2.20)

3. CONVERGENCE TO THE PHYSICAL
PROPAGATORS

In proposing a way out of the difficulty associated with
the use of the asymptotic formula (1.4), we have inter-
changed the order of the limiting processes 7—0 and N— o
in path integrations. A question remains to be answered as to
whether the limit could really converge to the physical prop-
agator for a real mass. An answer to this question has been
prepared by Nelson'’ in establishing the connection between
the Feynman and Wiener integrals by means of an analytic
continuation in the mass parameter. We would merely like
to exploit his result. Let us first summarize briefly Nelson’s
arguments in a way directly applicable to our problem.

Consider the Schrodinger equation,
—fidu(r,t) = {(H#/2m)7* — V(©)}u(r,t). 3.1

Here the potential ¥ (r) is a real function of the coordinate
variableralone, and u(r,? ) is square-integrable for any time ¢,
i.e., ucl A(R?). Let ¢(r) be u(r,0). Define

X (t;m)=exp| (ifit/2m)/?) 3.2)
on the domain D (572) of all ¢, where 3/? is self-adjoint, and
Y(t;V)=exp(—itV/#) 3.3)

on the domain D (V') of all ¢, where V'is the self-adjoint oper-
ator of multiplication by the function V.

If Vis a Kato potential,'® that is, if V fulfills the follow-
ing conditions:

B D(V)DD (),

(ii) for all positive @, there always exists an a-dependent
b such that for all yeD (V/?)

Vel <all7*¥l + bl

then the operator (##2/2m)<7? — V is self-adjoint and accord-
ing to a theorem of Trotter"

UmVyp= lim (X@/Nm)Y (/NV)Y,  (3.4)
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where
U (t;m, V) =expl(ifit/2m)7> —itV/H). (3.5)
In particular, in the absence of ¥, the solution of (3.1) is
given by
u(r,t)=U (t;m,0)(r) =X (£,m)y(r), (3.6)

or, more explicitly,

u(r,t )= (m/2mifit Y*'* | exp{ Lim [ (r — ')/t (' )dr'.
3.7)

Similarly, in the presence of a Kato potential which is suffi-
ciently regular, (3.4) can be written as

U(@m, Viig(e'") = JK (" e'sOH(r)Hdr, (3.8)

where

m 3IN/2
K@'yt)= llm ( )
27itie
N-—=1

N 1
JCXP(% Z 7’: Ar}—eV(rj)]) IT ar,

j=1

(3.9)

which coincides with the definition of the Feynman path
integral.

If the mass parameter m in (3.1) is a complex number,
the results of Kato and Trotter are not applicable. However,
Nelson devises a means to show that whenever Imm > 0 and
1 is square-integrable, the limit (3.4) exists for a potential is
real and continuous on the complement of a closed set Fin R
of capacity 0. In particular, if m is purely imaginary with
Imm >0, then U (;m,V) (3.4) can be expressed in terms of
the Wiener integral defined on the space {2 of all paths,
where V (w(¢)) is a continuous function of ¢ for 0<t < « for
almost every wef2. In general, the solution is not defined by a
path integral if m is not purely imaginary. A path integral
may be formed for a complex mass system, but it is not as-
sured to be convergent. We are interested in knowing wheth-
er U (M, V)¢ with a complex mass M = m(1 + in) hasa
limit for 7—0.

Nelson proves for the above-mentioned almost-every-
where-continuous potentials the following theorem: There is

a set Q of real numbers of Lebesque measure 0 such that for
all méQ, ¥el ? and >0

U (e:m,VYd(r)= lim V (&M, V yAr) (3.10)
n 0

exists when M approaches m nontangentially from the upper
half-plane; the operators U (1;m, V) so defined have the semi-

group property,

Utm VU (s;m,V)=U(t+s;m, V) a.11)
for0<1t,s < w,andforallyin L %, t—U (¢;m,V)is continuous
from [0, ] to L *.

As a consequence, we see that if Vis a Kato potential,

lim lim {X (¢ /N;M)Y (¢ /N;V )] V(r), (3.12)

y ON s

has a limit for all M with p>0 and m=£0, which is expressed
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in the form of the Feynman path integral (3.8). This certain-
ly justifies our proposed procedure applied to (2.16) and
(2.21) provided that the potential involved is of the Kato
class. A recent work of Faris' has indicated that the Kato
condition on the potential can be relaxed. Faris has found
that the expression (3.12) converges to the Feynman path
integral (3.8) even if Vis a Rollnik potential defined by the
condition

” V(r)V(r) drde < o

Correspondmgly our propagators (2.16) and (2.21) may in-
clude the Rollnik potentials.

(3.13)

In fact, Nelson’s theorem deals with a wider class of
potentials. However, special care has to be given to each
singular potential concerning the restriction on the mass of
the strength of coupling, since the path integral does not
always converge for all real m. As an example, Nelson has
examined the inverse-square potential which does not be-
long to the Rollnik class, and suggested that the solution of
the Schrodinger equation, involving a highly attractive sin-
gular potential, obtained by a Feynman integral, is physical-
ly relevant even though the operator may not be unitary. In
the Appendix, we shall also discuss the inverse-square po-
tential in a different manner and show that the proposed
limiting procedure works for the singular potential.

4.1S THE HAMILTONIAN PATH INTEGRAL A
PHASE SPACE PATH INTEGRAL?

At the end of Sec. 2, we have obtained what we have
called the Hamiltonian path integral in polar coordinates
(2.18) for the particle with a complex mass M. This result, as
has been observed in Sec. 3, is valid for ImM > 0 and has a
limit for ImM—0 insofar as a restricted class of potentials is
involved. We may safely suggest that the polar coordinate
formulation of the Hamiltonian path integral is possible at
least for the Rollnik potential and the inverse square poten-
tial although there is no guarantee that the path integrations
can actually be carried out.

It is certainly interesting to ask if the Hamiltonian path
integral that can be reached from (2.18) after the limiting
procedure is equivalent to a phase space path integral obtain-
able from (1.2) by a formal substitution of polar variables.

The Hamiltonian path integral (2.18) with a real mass
may be expressed as

K(rl/’9//y¢l/;r/’6r’¢!;7_)

=(r*rsin@'sing")" 2 lim lim Qmh) Y

70N -0

x3 3 j f I 80s—pu/m3(—p/ )

Xexp|-L(p, Ar-+pA0+p, A8~ Hyo)

x Nr[I (drd6ds) fI (dpAppps) “4.1)
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with

H.x = p;/(M) + (p§ — §#)/2Mr)

+ (03— )/ 2MPsin®d) + V (7). (4.2)

On the other hand, the path integral (1.2), when expressed
formally in terms of polar coordinates and their conjugate
momenta, takes on the form

P(r”,e”,¢”;r’,6,,¢’;7-)

=(r?r'"sind'sind") "2 lim lim Qaf)
7—0 N—w

<[ [ L exw( S0 Ar+pao+p,As—He)
x 11 (@rd6ds) [] @pdpedps). 4.3)

where H is the classical Hamiltonian,

H=p2/(M )+ pl/ 2MPr) +pL/(2Mrsin’8 )+ V (r).
4.4

This phase space integral differs from (4.1) in the following
two points. First, the Hamiltonian (4.4) differs from (4.2) by
an additive term (1 +csc?@)#?/(8Mr?). Secondly, the values
of the momenta conjugate to the angular variables are dis-
crete in (4.1), whereas they are continuous in (4.3).

The midpoint prescription used by McLaughlin and
Schulman’ and by Gervais and Jevicki® in dealing with point
canonical transformations in path integrals leads us to an
additional potential term which can account for the differ-
ence of the Hamiltonians (4.2) and (4.4). The phase space
path integral one can derive from (1.2) on the polar coordi-
nate basis by following the same prescription is of the form of
(4.3) with the effective Hamiltonian (4.2) instead of (4.4).
The result appears to be identical®® with the formal expres-
sion (1.7) but differs from it since (1.7) actually means the
expression (4.1). Formal integrations of (1.7) over the con-
tinuous angular momenta give us an effective Lagrangian,

Lg=Ly+(1+csc’0)/(8mr) — ifi(#/r+ 46cotf)
(4.5)

which is not our starting Lagrangian. However if we take the
contributions only from discrete values of the angular mo-
menta, we can get back to the starting Lagrangian L ;.

The appearance of the quantized angular momenta in
(4.1) is due to the rotational symmetry the system carries.
The second gap must be filled by a proper account of con-
straints due to the symmetry.?' In order to obtain the path
integral of the form (4.3) with (4.2) via the midpoint pre-
scription, one has to assume that the angular intervals A9
and 44 range from — o t0 oo although the normal ranges
are 0<A6<7 and 0<A44<27. In fact, because of the underly-
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ing spherical symmetry, one can introduce new variables
ranging from — o to o by 6=460+ 27y and ¢ A+ 2mv
(u,v=0,41,42,--). However, the set of indices (1,v) speci-
fies a class of homotopically equivalent paths, and the total
propagator is the sum of all propagators belonging to differ-
ent homotopy classes, i.e., K= 2, , K (1,v). Now we can
understand the Hamiltonian path integral (4.1) with (4.2) as
a consequence of such constraints. The phase space integral
that can be reached on the polar basis by the midpoint pre-
scription describes only a partial progagator for a central
potential problem.

In the following, we wish to illustrate, by taking the
two-dimensional rotator as an example, how the quantized
angular momentum comes about. Since the validity of the 5
limit is obvious in this example, we simply use a real mass.
The Lagrangian for the rotator is

L=1I¢>. (4.6)

If — o <@ < o is assumed, one can get the propagator,
K (A¢;)=(1/2mifir)" *explil (A )2/2%i7)], 4.7

from the one-dimensional free particle propagator,
K (Ax;7y=(mr¥" /2mitit) Zexpim(Ax):/2#i7)],

bysettingAx = RA¢ and I = mR *. However the result is not
quite correct for the rotator. We must notice that the polar
variable ¢ ordinarily ranges from O to 27 and that the space is
doubly connected. Therefore, by retaining A4 in the range
0<A¢<2m, we replace A by ¢ A¢ + 2mn, and write (4.7)
as

K (b;ry=(/2mitir) explild 2/ (#i7)], (4.8)
or

K (Ag;T)=(I/2mifir) *explil (Ad + 27n)2/2#7) ],

4.9

For n =0, (4.9) reduces to the form of (4.7), describing the
propagator for a rotation by an angle A¢ = |Aé|<2#. For
n=0, (4.9) represents n full rotations plus a rotation by the
angle A¢. Namely, the integral number # classifies all homo-

topically inequivalent rotations with a fixed 4¢. Therefore,
the total propagator must be given by

K (Ag;r)=U/2mifir)' > 3

n=—oo

X explil (A + 2mny/247)], (4.10)

which can easily be transformed with the aid of the property
of the theta function'’ to the standard form,

K@pn=emn' 3§

V= — o

exp(ifvit/21 Yexp(ivaé ).
4.11)

We can also get the result (4.10) directly from the path inte-
gral for the Lagrangian (4.6) subjected to the periodic con-
straint,"! 6(¢ §ddt).

Next we rewrite (4.10) as
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K (4¢;7)=(1/2mitirw)"? f n;;

X explild */2#7))5(Ad — + 2mn)d.

(4.12)
Furthermore, using the Poisson formula,
Y exp(ive)=2m i 8(8+ 2mn),
and the integral formula,
f expli(ap—bp*) 1dp=(/ib )" %exp(ia*/4b),
we put (4.12) in the form
K dg,r)= ———Jf exp[iv(A¢— ¢)]
ip 5 irh )
X e — dpd 4.13
xp( ; é o7 7 jdp 4. (4.13)

Integrating over ¢, we arrive at the expression

Kdgn=3 f&(v—p/ﬁ)exp( Lﬁ(pAgb—Hr))dp
' (4.14)
with
H= ! —p
20

This relation holds true for any short time propagator
K (4¢€). Ontheother hand, from the semigroup property of
the propagator we have

(4.15)

N N-1
K(d¢;r)= Nl’im [1&@Adze) T] (@) (4.16)
o J j
Therefore, substitution of (4.14) for each short time propa-
gator in (4.16) yields

K(4g;ry= lim Hé(v—p/ﬁ)
gm 2 )1
xexp( +(pag— ) T] (@) ] @

(4.17)

This is the Hamiltonian path integral which gives us the
correct propagator (4.11), and is a special case of (4.1). The
additive term —#2/(87 ), which is missing in (4.15), is a con-
stant in this case and gives rise only to a constant phase
difference which may be eliminated in the normalization
process.

APPENDIX

Here we wish to present an unrigorous argument con-
cerning the validity of the proposed limiting procedure for a
inverse-square potential.

For the harmonic oscillator which belongs to the Roll-
nik class, the path integral (2.7) has been calculated directly
without resort to the asymptotic formula (1.4), the result
being®
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K (r"rim)y=") ~Vmo/if)csc(wr)
Xexp{{imw/20)(r +r'"*)cot(wr)}
XTIy [ (meo /By csc(wr) ] (A1)

for Rem > 0. Thus the validity of the limiting process (2.16)
is obvious in this particular potential. By comparing (2.15)
and (A1), we find the following formula,*

lim ( m )N/zfex { L fr ( Imr
N - \ 27ifie Pl % 2
(A‘ 2 %)ﬁl

— T %ma)zrz)dt] NH] (dr)

2mr?

= (") *(m/itir)csc(or)expl (imw/28)(r> + r'?)
X cot(wn)] I; [(ma/if)r¥” csc(wn)], (A2)

valid for Red > — 1, Rem >0, and Imm >0. Now we set
o = 0 and

A= [+ L)+ 2mk /#]"? (A3)

to obtain

R X
fexp[ Lf (%mr'2 G —]S-)dt}.’//‘r
# 2mr r

= (r¥'") VA(m/itir)explim(r'* + r''?)/(2#1r))
X Ayl (m/ i)y |, (A4)

whichis valid for Red > — 1. Although the physical range is
A0, ie., k> — 10/ + 1y#/m, the identity (A4) is valid
for any />0 and any & real. This is consistent with Nelson’s
result."
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Instead of the spherical basis vectors used to study tensor harmonics, we propose the use of the helicity
basis. The rank-j tensor harmonics in this basis are explicitly worked out and their properties exhibited.

INTRODUCTION

The basis vectors frequently used in the study of tensor
harmonics are the spherical ones e,(z = 1 1,0) which are
related to the unit vectors e,, e, and e, of the three-dimen-
sional Euclidean space E (3) by the equations

e, =F -1—_(ex tie), ee=e, (1.1a)
2
The vectors e,, satisfy the identity
e, =(—1ye_, (1.1b)
and the orthonormality condition
e, e, =08,, (1.1¢)

the star denoting complex conjugation.

Using these basis vectors and the scalar spherical har-
monics Y} (6,4 ), one then obtains the vector spherical har-
monics Y (6,6 YJ = I + 1,1) by coupling Y}, and e, with
the O(3) Clebsch—-Gordon coefficients',

Y, (6:9) = SCUM —puu)Y e, (1.2)
M

The vector spherical harmonic so constructed transforms
according to the irreducible representation D’ of the O(3)
group. Higher rank tensor spherical harmonics are also built
up in the same way, namely by the coupling of the lower ones
with the irreducible basis vectors in the product space
through Clebsch—-Gordan coefficients so as to transform ac-
cording to a given representation of the O(3) group. Tensor
multipoles needed, for example, for the study of electromag-
netic and gravitational radiations, are then obtained by oper-
ating the unit vector r/r, the gradient vector v/, and the
angular momentum vector L on the appropriate spherical
harmonics. This is often a tedious procedure especially if
higher rank harmonics are involved and it is our belief that it
can be circumvented if a suitable choice of basis vectors is
used.

For this and other reasons, therefore, we wish to study
in this paper tensor harmonics using the helicity basis of
Jacob and Wick.? Its chief merit, as we shall see, is that the
tensor harmonics and tensor multipoles are treated on an
equal footing, thereby eliminating those tedious algebraic
manipulations referred to earlier.

In Sec. 2 we introduce the helicity basis states of Jacob
and Wick and prove the important result that under a rota-
tion the basis state is invariant up to a phase factor. The
vector harmonic in this basis is discussed in Sec. 3 while
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tensor harmonics of rank j(j>>2) are studied in Sec. 4. The
general result is particularly simple; the tensor harmonics in
the helicity basis are the product of an O(3)D-matrix and the
basis vectors in the product space. Relations between these
and the spherical harmonics are also given.

2. THE HELICITY BASIS
The operator A, defined by
A=8n

where S is the intrinsic angular momentum vector, and

n = p/|p| is the unit vector in the direction of the linear mo-
mentum p, is called the helicity operator. Its eigenvalues,
which shall be denoted by A, are either integers or half odd
integers: In this study we shall only be interested in integer
values of A. In the helicity basis, therefore, the orientation of
the spin S refers to a coordinate system whose z axis is in the
direction of the momentum vector p. Let G, be the group
consisting of all rotations H, which leave invariant the unit
vector k along the z axis.

Hxk=k. Q.1

If we define a rotation L, which takes the unit vector k into
the direction of p

Lk=np, 2.2)
then, in terms of the Euler angles 6,4 and ¢
L, = exp( — i¢J )exp( — i6J Yexp( — ipJ), 2.3)

where J, and J, are the angular momentum operators. Con-
sider now a general rotation R which takes P into p’, so that

p=Rp (2.4)
and p* = p2. It then follows from Eqgs. 2.2 and 2.4. that

L, 'RLk=Kk,
sothat L lRLpeGZ, the group of rotations around the z-axis
and for some /#€G,, we have

h=L g 'RL, 2.5)

a rotation representing a special direction along the z-axis.

Denoting the helicity states by y,,(p), the relation be-
tween y,, and ¢ ,,[p), the angular momentum states with
momentum p, spin J, and J, = M, is given by

X @ =Y DipAL g b yu(p), (2.6)
MM

where D}, (L ) =D/ (L)

In the rotated frame, we have
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X 'JA = ;D ﬁ'M'(L ~ ])¢:IM’(p')

= Z DYy AL k_pl)D veoar AR )P 1 (B)

= ;D 1/1 )y 1, (D), 2.7

on using Egs. (2.4) and (2.5). Since 4 is diagonal, the result
X407 = [expia(d )1y (p)., (2.8)

a real, then follows. Thus under rotation y,; is invariant up
to a phase factor. It is this property which makes the helicity
basis, in our view, a natural one to use.

The rotation of the coordinate system in such a way that
the z axis is in the direction of p will require three Euler
angles, the two polar angles 8, ¢ and the angle ¢ which is
arbitrary, since we are working on the unit sphere 2. In the
following, therefore, ¢ will be chosen to be zero.

3. THE VECTOR HARMONICS

The vector harmonics in the helicity basis are easily
obtained from Eq. (2.6) by observing that the spherical basis
vectors e, are related to the helicity basis vectors €, by the
equation

e/t = ZD ‘1]1; (¢’6’O) € (3 1)
A
where
D AJVIN (¢!6:¢)
—(IMIexp(~idJ exp(—ifj Jexp(—ipJ WN>.  (3.2)

From the orthonormality properties of the rotation matrices

and of e ,, we get
€, =(—1) e 2

Starting from the definition of a vector spherical harmonic,
Eq. (1.2), we obtain the relation

Y i (0,4)=3(=1) " CULL —A)H L, (8,0),
A

and €;-€,=5 ;. (3.3)

(3.4a)
or

(=)' H 3, 8,0)=YCUE—A Y ;,,(6,¢), (3.4)

where

2
) D%, 3.60) < (3.5)

HY, (4.0)= (”j1

shall be referred to as the vector harmonic in the helicity
basis, the scalar one being, of course, the usual

Y U+ N2
YM<9,¢)—( . ) D% (6,60,

Hy,, is the eigenstate of J2 and J, but not of L ?, a small price

(3.6)
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to pay considering other advantages. It satisfies the reality
condition

H?{;A:(—I)MHiMfzs (3.7
and under the parity operation P we have
PHY, =(—D)'""HY, ;. (3.8)

The harmonics are also orthogonal in the vector space £ (3)

jdﬂ H ﬁw -H {vm =6 JJ"S mar S aas (3.9
with d2=sinfd6d¢, 0<O<m, and 0<d<27. Hence any
vector field A(r,¢) can be expanded in terms of the vector
harmonics as

A(r,t):EA,Jm(r,t)H,Jw(qﬁﬂ),

JMA

(3.10)

where 4 4., the scalar functions of #(=[r]) and ¢ only, are
given by

A{W(r,t)zj’d.(l Hi, (6.8) - A(rt). (3.11)
This shows that vector equations with rotational symmetry

such as Maxwell’s equations can be solved in terms of these
harmonics.

We mention in passing that the scalar function € -H 7,
is the same as a function introduced some time ago by New-
man and Penrose’ and called the spin-A spherical harmonic.

One obvious advantage of the use of the helicity basis is
the ease with which the vector multipoles are obtained. In
this formalism they are straightforwardly given as

1/2
Hy, = (ﬂil_) D4 €,

47
172
H:JWO: (2J+1 ) D:J\,;ofm 3.12)
4
and
2J 4 1\i2 .
HLH:( ) D,wale,_l,
47

to be compared with the usual method of deriving them via
the application of the operators r,#</, and L on the scalar
harmonics.*

By an ad hoc procedure of introducing a new definition
for the vector multipoles, Daumens and Minnaert’® obtain
results equivalent to ours. Our notations H |, H, are related
to the transverse electric X, transverse mz_{gnetic X.,, and
the longitudinal electric X, of these authors by the equations

J _wJ
H MO T X oM

1
Hy =+ —\—/=(X*'HM¢X~:M) (3.13)
2

It should be stated that although we obtain similar results
the two approaches are very different.

4. TENSOR HARMONICS.

Because of their applications to problems involving
gravitational radiation, rank-two tensor spherical harmon-
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ics have also been studied by Regge and Wheeler,* Zerilli’
and more recently by Daumens and Minnaert. These were
constructed by coupling the tensors of the spherical basis
and the spherical harmonics through Clebsch-Gordan coef-
ficients. We evaluate in this section the second-rank tensor
harmonics in the helicity basis. Using Eq. (3.5), it is a simple
matter to see that the rank-two harmonics in this basis are

/2,
H@:(Zﬁ;l) DL, (6,60) t5 @.1)

where 5 (S = 0,1,2; 4 = + 2, + 1,0), the nine basis vectors
in the product space E (3) ® E (3), are

G=SCUISA—1'A ). 06,4 4.2)
i
with
) =(= D", “3)
and
(tf)'-tf: = 535 '54/1 8 “4

The harmonic (4.1) is related to the rank-two tensor spheri-
cal harmonics Y%,,(6,4 ) by

Y5,6.0) =Y (— D'CUSEL — A)H5 (6,0)  (4.5)

A

or

(— V'H3f3(8,0) = YCUSL —A)Y5,(6:4)  (4.6)

{

The H-functions satisfy the condition

Hﬁ; =(- 1)M+5Hﬁ‘~ As 4.7
transform under the parity operation P as

P:Hyp = (=1 Hy_, (4.8)
The tensors are orthogonal in the product space E (3) ® E (3),
Hy HLS

1 , .
= E[(U + '+ DD 3D 2y Bss 8,5 (4.9)

and are also orthonormal,

f e HIJWS/I"Hﬂ{{' = 511 5MM Dss '5,1,1 i 4.10)

Therefore in this basis, a tensor field X(r,t ) (using the dyadic
notation) can be expanded in terms of Hyy, (#,0) as

A= 3 A% (nOHE 8.0),

JMSA

(4.11)

which gives, in general, nine quantities of helicities

A= +2,+1,0;§=0,1,2. Using Eq. (4.10), the expansion

coefficients 4 13, (r,¢) are obtained as
A ,{fi = fd.() H‘,{‘Z{-A. 4.12)

The above analysis can thus clearly be used to study, for
example, the weak-field radiative solutions of the Einstein
equations.
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The nine tensor multipoles are given in this basis to be
simply
2 J2
H‘Ilwzi 20 H.Iltli 1’ HMO’

J 1 J 1 J O
HY) ., Hjl, and H,

to be compared with the rather tedious way of obtaining
them in the spherical basis.” Again, our results are related to
those in Ref. 5 by means of the identifications®

(— XS}, = Hi,,

1
(_ I)AXS;AM= = (Hﬁ¥1 i(— I)AHﬁi}.)~
2
(4.13)

Construction of rank j tensors (f > 2) is now easy. The prob-
lem clearly reduces to constructing a set of basis vectors in
the product space £ (3) ® £ (3) ® - ® E (3) (jtimes), since the
rotation matrix remains formally unchanged. By a simple
inductive argument we can show that the rank-j tensor har-
monic in the helicity basis is given by the expression

1Saee | Z] 1 1/2 * ,2...‘ |
HSS (¢,e)=( . ) DI 655

4.14)

where the basis vectors are

tilsr-'sl !

= 2 C(“Sl;/{l»/lz—il)c(sllsz;ﬁz,/lz*/lz)xm
-A

Ay

J

XC(S 1S, iy =4 )

XC(S;- (1SiA,A — 4)

X€,B€;, ;€318 0€ ; ©€ ,

= 3 [1CES Sidk — A 4

A A, (=0

with S, =0, 5, = lyio:O,/iij]:/{. (415)

The orthogonality properties of the above harmonic then
follow from those of the rotation matrix and of the helicity
basis vectors €, as shown earlier.

Although a rank j tensor has 3 components, it often
happens that in certain physical situations, such as in general
relativity, only the fully symmetric and traceless ones may be
needed. For such particular cases, only the maximal cou-
pling (S; _, =) are needed and the completely symmetric
basis vectors are given by

o [2G+AnG— A2
t= [ e ]
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Xy IL[ [+ AN =~ )] %eq, (4.16)

A i=1

with A= $ .

i=1

5. CONCLUSIONS

We suggest in this paper the use of the helicity basis
vectors for the study of the tensor harmonics and have de-
rived the rank-j tensor harmonics in this basis. The tensor
multipoles are then shown to be special cases of these har-
monics. Equations possessing rotational invariance can be
solved using this basis. The applications of these results to
the Maxwell’s equations and the weak-field approximations
to the Einstein’s equations are presently being studied.
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In this paper we consider the problems of object restoration and image extrapolation, according to the
regularization theory of improperly posed problems. In order to take into account the stochastic nature of
the noise and to introduce the main concepts of information theory, great attention is devoted to the
probabilistic methods of regularization. The kind of the restored continuity is investigated in detail; in

particular we prove that, while the image extrapolation presents a Holder type stability, the object

restoration has only a logarithmic continuity.

1. INTRODUCTION

In Fourier optics a vast amount of literature has been
devoted to the problem of object restoration. The interested
reader is referred to the review papers by Frieden' and
Goodman.?

One of the points, which has been largely debated, con-
cerns restoration beyond the diffraction limit in the presence
of noise. As already stated®” a significant improvement in
resolution can be accomplished if the object is very poorly
resolved by the optical system at the start; on the other hand,
if the object is extremely complex at the start, improvement
of resolution requires signal-to-noise ratios that are unrealis-
tically high. One might argue that these limitations are due
to the fact that the number of degrees of freedom of an image
is finite.’ In other words the image is “ambiguous” in the
sense that many different objects can have one and the same
image (within a given accuracy) and therefore the observer
must necessarily make use of some a priori knowledge.’

This remark is in accordance with the fact that the ob-
ject restoration belongs to a large class of linear inverse prob-
lems (relevant in many fields like identification of targets,
probing of media, geophysical exploration, and in any other
field of remote sensing) which are ill posed in the sense of
Hadamard, since the solutions do not depend continuously
on the data. Therefore, as it has been emphasized by many
authors,** these problems must be reconsidered according
to the regularization theory of improperly posed problems.”*
This is a means for introducing a priori knowledge under the
form of precise a priori constraints (as far as possible of phys-
ical origin) which restrict the class of admitted solutions.
Then regularization gives a continuous dependence of the
solution on the data in the sense that a small variation of the
data leads to a small change in the solution.

In this paper we consider an ideal, diffraction limited,

“Aspirant du Fonds National Belge de la Recherche Scientifique.
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space-invariant, imaging system. For one-dimensional, co-
herent objects, identically zero outside the interval [ — 1,1],
one has

sy = [ M= s o,

t]gl, (1.1
i r1<1, (L)
where y is the image (assumed to be known on the interval
[ — 1,1]), x is the object, and z is the noise; the quantity
d = 7/c is the Rayleigh resolution distance.

We shall analyze the following problems:

(1) object restoration, i.e., to estimate the object
X given y;

(2) image extrapolation, i.e., to estimate a band-limited
function whose restriction to the interval [ — 1,1] approxi-
mates p.

The main reason for our attention to the optical system
described above is that, in this simple case, one knows the
eigenfunctions of the integral operator of Eq. (1.1) [they are
the linear prolate spheroidal wavefunctions' ¥#,(c,x), with
the associated eigenvalues 4,(c)] and their asymptotic beh-
viorwhenk — + oo. From this fact it derives the possibility
of obtaining very precise results on problems (1) and (2).

Now, as we said above, the main prescription in order to
restore the continuity in the case of ill-posed problems, con-
sists in restricting the admitted solutions by imposing a sup-
plementary global bound’*; next one must investigate the
kind of continuity which has been restored.’ In some prob-
lems it is possible to have a fairly satisfactory Holder type
stability; i.e., if we denote by € the data accuracy, then the
solution accuracy is dominated by a term proportional to *
(0 <4 < 1). On the other hand there are problems where the
solution accuracy is at best proportional to |Ine|™* (logarith-
mic continuity). One of the main results of this paper con-
sists in showing that the restored continuity is of the Hélder
type in the extrapolation of a given image piece beyond its
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borders [Problem (2)}, while in the object restoration [Prob-
lem (1)] it is only logarithmic.

In the usual regularization theory of ill-posed problems,
one supposes that the error and the solution lie in some
bounded sets of the respective Hilbert spaces. These condi-
tions could appear too rigid, since it should be preferable,
from a physical point of view, to regard the noise as a sto-
chastic process. Furthermore, after the advent of the Shan-
non information theory, many concepts which were origin-
ally elaborated in that context, were successively largely
applied to the analysis of optical systems.' These are the
principal motivations for introducing probabilistic methods
of regularization of ill-posed problems. We devote Sec. 3 to
probabilistic methods in a Hilbert space setting, along the
lines introduced by two of the authors;! furthermore a com-
parison of the two procedures is discussed in detail.

The paper is organized as follows. In Sec. 2 we analyze
the regularization method proposed by Tikhonov and Mill-
er,”® with attention to the specific questions which are of
interest in the optical problems here considered. In Sec. 3 we
develop the probabilistic method. Section 4 is devoted to the
problem of object restoration; here we prove that the re-
stored continuity is only logarithmic. In Sec. 5 we analyze
the problem of image extrapolation, showing that in this case
the restored continuity is of the Holder type. Finally in Sec. 6
we try some conclusions.

2. TIKHONOV-MILLER METHOD

In this Section we sketch a method first proposed by
Tikhonov’ for Fredholm equations of the first kind and inde-
pendently developed by Miller® for improperly posed prob-
lems in a Hilbert space setting. Here we follow the paper of
Miller® for the presentation of the general method; we also
give some results on stability estimates which, to our knowl-
edge, are not available in the literature.

Let X, Y be separable Hilbert spaces and 4:X — Y a
linear continuous operator such that the inverse operator 4 -
exists; if 4 ': Y — X is not continuous, the problem: find
x € X such that y = Ax, where y € Y is a given vector, is im-
properly posed in the sense of Hadamard. In practice this
pathology is very serious, since the data are always affected
by errors. More precisely, the data vector y can be viewed as
the sum of two terms: y = Ax 4 z, where x € X is an un-
known vector which has to be approximately determined
and z € Y is an unknown vector describing errors or noise.
Since A ! is not continuous, the knowledge of y and of a
bound on the error z is not sufficient in order to find an
approximation to x. Further “a prior” knowledge on x is
required.

A. The general method

The basic point is to assume for the errorz =4x —y
and for the unknown vector x the following prescribed
bounds: ||z|| y = l|dx — y||y<€, ||Bx|| ,<E, where B: X — Z
(Z is a Hilbert space) is a linear operator (the so-called con-
straint operator®), densely defined in X, which has a bounded
inverse; €, E are given positive numbers (we do not consider
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the case where only one of the two numbers € and E is
known®). Then, any vector x € X satisfying the conditions:

| 4% — ylly<e 2.1
|Bx||z<E 2.2)

can be called an approximation to the unknown vector x.
Such a definition is reasonable if:

(1) there exists at least one vector X satisfying
(2.1),(2.2) (in such a case the pair ¢, E is called permissible®);

(ii) there exists a norm or seminorm {-» such that
M (e,E) = sup{{x) | xeX,||4x|| y<€,||Bx|| .<E} (2.3)
tends to zero, as € — 0, for fixed E.

When (ii) holds true, we say that Problem (2.1), (2.2),
i.e., the problem of finding a vector X satisfying the condi-
tions (2.1), (2.2) is stable with respect to the norm or semin-
orm <->. Any upper bound for M (¢,E ) is called a stability
estimate and M (¢,E ) itself is called the best possible stability
estimate. M (¢,E) gives the size, in the sense of the norm or
seminorm {->, of the “packet” of the vectors X satisfying
(2.1), (2.2); indeed if X, X, satisfy (2.1), (2.2), then
|4 — %)l y<26, ||B (X — X)|| ,<2E, so that
{x, — x,)<2M (€,E ). Now, if { €,E } isa permissible pair, one
has to find a2 method in order to exhibit explicitly a vector
which satisfies the constraints (2.1), (2.2).

Let K7  be the set of all the vectors ¥ satisfying (2.1),
(2.2). K¥ is convex and bounded; besides the unknown vec-
tor x belongs to K z. If ¥ € KJ i, then ||X — x||x is 2 mea-
sure, in the sense of the norm of X, of the error which is done
by taking X as an approximation to x. Since x is unknown, a
pessimistic estimate of this error is given by

& (@) = sup{||x — x||x |x €K} .4)

It is not difficult to prove that there always exists a vector X,
which minimizes the functional &(-) and belongs to K ;
then we can take such a vector as a “best-possible” approxi-
mation to x. Besides, if there exists a center of symmetry of
K ;, then it coincides with X,. Unfortunately the set K¢ .
usually does not have a center of symmetry; therefore it can
be quite hard to find a vector which minimizes # (-). Howev-
er we can combine the two constriants (2.1), (2.2) into a
single one and introduce the convex, bounded set

I?’;‘E: {x

1
e X, —||4x — y||?
xex, Ljax i
1 2

Then K, +CK Y eC K25, 55 Wedonot make a large error
if we consider K- ¥ pinstead of K - and corresponding Z()
instead of € (), &(-) being defined asin Eq. (2.4), where K7
is replaced by K ? ¢ Since K 7 ¢ has a center of symmetry
which is given by

i=|ara+(EYB*B| 4%, (2.6)
44+ (5)55)
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% minimizes £ (-) and it can be taken as a “nearly-best-possi-
ble”” approximation to x. Indeed, recalling that

K7 eC K35, 55 We can conclude thg the approximation X

is best-possible but for a factor of V. Finally, it is impor-
tant to note that this method gives an approximation to x,
which is satifactory independently of the choice of norm (or
seminorm) for measuring the error. Indeed, one can prove
that®

G —x)<V2M(e,E), @7
where M (¢,E) is defined by Eq. (2.3).

The previous method suggests the introduction of the
following stability estimate,

M(e,E) = sup[(x)

1
xeX,— ||Ax — y||?
2¢t I Yy

1 o
+ o IBxl<t) @9

It is clear that M (¢,E ) is an upper bound for M (¢,E ); more
precisely one has

M(.E)<M(6.E)<V2M (¢,E) 2.9)
and, instead of inequality (2.7), one gets

(F— x)<M (e,E). (2.10)

B. Stability estimates

Here we give results on the stability of Problem (2.1),
(2.2) with respect to those norms and seminorms which are
more appropriate for the problems considered in this paper;
the stability can be achieved by properly choosing the con-
straint operator B.

(i) Let us assume that the operator B has a bounded
inverse, without any further property; then Problem (2.1),
(2.2) is stable with respect to the family of seminorms:
{x) = {(x,u) x|, ||u]lx = 1 (where u is a fixed but arbitrary
vector on the unit sphere).

The following result is proved in the paper of Miller®:
Theorem 2.1: If C =4 *A + (e/E)*B *B, then

M e.E) ="V 2e(Cuw)?, @.11)
M(e,E) being defined by Eq. (2.8) with {-> replaced by
I('9u),\' I g

From Theorem 2.1 we can derive the following result:

'y heore_r:n 2.2: M W(€,E) tends to zero, as € — 0, for fixed
E; besides M (¢,E ) = O(¢) iff u € range (4 *).

Proof:Ifwewrite |B | = (B *B)"*andifweintroduce the
operator S = 4 |B | (§ ' exists since 4 ! exists), then Eq.
(2.11) can be rewritten as follows,

172

MeE) = V?e([s*s+ (—)21] B 'u|B |“u>

€
E x

@2.12)
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For the sake of simplicity we suppose that the operator A4 is
compact (however the Theorem holds true even without this
assumption). Then the operator S is compact and we denote
by {52 }.1_% (5 > 0; 5o>5,>5,> ) the set of the eigenvalues of
the operator .S *S and by {u, }./_% the set of the correspond-
ing eigenvectors. {u, },7_% is an orthonormal basis in X so
that we can write

— . —1 2 9/2
M"(e,E)=\/2e(+z 8] wx| j @13

K=o  si+(e/EY

From this equation it is clear that M (¢,E ) tends to zero, as
€ — 0, for fixed E. Besides, let us assume that ¥ € range (4 *);
then there exists a vector v € Y such that 4 = 4 *v. If we in-
troduce the vectors v, = s, 'Su, [{v, };_% is an orthonor-
mal basis in range (S)'’], then Eq. (2.13) becomes

2

_ £ s
M(eE)= \/Ee( S S—
©5) kg’o si+(e/EY
so that ﬁu(e,EK\/EHvH v and M (6,E) = O (¢).

Now, let us assume M {(€,E) = O(¢), then there exists a
constant §, such that

= |(|B |, 2
* |(| | “uk)xl <5,
o si4(e/E)

If X is the maximum integer such that s, >€/E, then
K — 4+ o when € — 0; therefore

& —2 -1 2
2 s CIUB] T Tuuy]

72
|(v,o)y |? j (2.14)

(2.15)

K B -1 , 2
2y (€181~ x| <26, 2.16)

o  si+(e/EY
for any K. We get
+ o
S s UB ] tuu)y | P<28,

k=0

2.17)

or, in other words, |B |"'u € range (S*). Then there exists a
vector v € Y such that | B |"'u = § *v and it follows that
# = A *v. The Theorem is proved.

(ii) Let us assume now that the operator B has a com-
pact inverse. Then the set K~ = {x|xeX, ||Bx||,<E } isa
compact subset of X; analogously the set J, = 4K . is a com-
pact subset of Y and the operator 4 defines a continuous, one
to one mapping of K ; onto J .. From a well known topologi-
callemma' it follows that the inverse mapping from J; onto
K is continuous; such a result implies that M (¢,E)

= sup{ x|l IxeX, |l4x||,<e, ||Bx||,<E }

= supl{||4 yllx[y € Y, [Pl y<e, [[B4 “p|[,<E } tends to
zero, as € — 0, for fixed E. Therefore, one can conclude that:
when the operator B has a compact inverse, Problem (2.1),
(2.2) is stable with respect to the norm of X.

The previous result is essentially qualitative; we can
have a more precise result (see Theorem 2.3) in the following
case. Let us assume that 4 : X—Y is a compact operator
(such an assumption is satisfied for the problems considered
in Secs. 4 and 5); then, let {a% },/_% (2, > 0; ap>a,>a;>-)
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be the set of the eigenvalues of the operator 4 *4 and
{u, }it_ be the set of the corresponding eigenvectors,

+
A*Ax =3 apxuy, xe= @)y
k=0

(2.18)

In such a case a considerable simplification is introduced if
one considers a constraint operator B such that B *B and
A *A commute, i.e.,

+ o
B*Bx= 3 Bixu, Xx,=Xu)y 2.19)
k=0
Then the operator B has a compact inverse iff
lim, . , _B%= + w.Itisself evident that the condition is
necessary. In order to show that it is also sufficient, one must
prove that any set K = {x € X | ||Bx||z<E }is conditional-
ly compact. Such a result follows easily from the proposi-
tion'*: 4 subet K of 1, p>1, is conditionally compact iff it is
bounded and lim,, , 3" > |x, | = O uniformly for
ek
Now, let I, be the set defined as follows,
I,e= (ko >(e/E)B,}-

Since 4 *A4 is compact, the eigenvalues a} accumulate to
zero; on the other hand, the eigenvalues 82 of B *B tend to
infinity. Therefore, the set I, contains only a finite number
of points.

(2.20)

Besides, if we write
€ .

— | =min{a, kel g},
a( E) fa s}
5(—2)=min{ﬂklké1£/£}, @21
we have the following result:

Theorem 2.3: The inequality holds,

1 € E
?(a(e/E) + B(e/E))
€ E
a(e/E)  B(e/E)’

where M (€,E ) is given by Eq. (2.3) with (> = |||/ x.

Proof: Inequality (2.22) is a consequence of a lemma
(three norm lemma) proved by Miller" which states that

(2.22)

<M(e,E)<

I[L(,E)+ H(e,E)]<M(6,E)XL(6,E) + H(¢,E),

(2.23)
where:
9 172
L(e,E)=sup[( > x| ) |xeX,
kel
(3 atinl) <. 229
kel,, .

H(eE)= sup[( LS |2)1/2|x ex,

kel
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(m‘,,,ﬂi % '2)1/2@}- 2.25)

Since the functionals involved in Egs. (2.24), and (2.25), are
linear in the parameters |x, |, it is easy to show that
. H@EE)= —,
a(e/E) B(e/E)

and the Theorem is proved.

L(eE)= (2.26)

In the particular case B = {4 *)"' we can obtain a more
precise result:

Theorem 2.4: If B = (4 *)7', then

M(E)<V eE , (2.27)
where M (¢,E )isdefined by Eq. (2.3) with (-> = ||-]| . Besides
the equality holds when the ratio €/E is equal to one of the
eigenvalues of the operator 4 *4.

Proof: From the Schwarz inequality we have, for any
x erange (4 *)

x5 = (4 'Ax,x) , = Ux,(4 *)" 20 <[ 4x|[ y [|(4 *) x|,
(2.28)

and the inequality (2.27) follows from the constraints

[l[Ax|| y<€, [|(4 *)'x|| y<E. Besides, if the pair {¢,E } is such
that ¢/E = a}, where a2 is an eigenvalue of 4 *4 and if we
take x = Ea,u, (u, is the eigenvector corresponding to a3),
then ||4x||, = Ea} = €, ||(4 *)'x||y = E; on the other hand,
||y = Ea, = \/ €E and we can conclude that, in such a
case, the equality holds in (2.27).

(iii) Let us assume now that the inverse of B *B is an
operator of the trace class. In other words, there exists an
orthonormal basis {«, };/_% in X such that the operator B *B
has the spectral representation (2.19) and

+
Z Bil<+ .

k=0

(2.29)

In the domain of B we can introduce the following norm
(which shall be used in Sec. 5),

+ o
Hx[l= 3 |%] %= &)y (2.30)
k=0
indeed, by the Schwarz inequality
—+ oo 1/2f + o© /2
elii<( 3 8 2) (3 At )
k=0 k=0
+ o _ s 172
=(zm)|Wh @31)
k=0

Now, the set Kz {x €X ||||Bx|| ,<E }, is compact with
respect to the norm (2.30); indeed, by the Schwartz inequal-
ity and condition (2.29),

4+ oo + oo 172
5 |xk|<E( 5 ﬁk—Z) —0, 1> +w (232
k=n k=n

uniformly for x € K. The compactness criterion in /,, p>1,
already recalled' implies that X ; is a conditionally compact
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subset of /;. Besides it is easy to see that the set K £ 1s closed
with respect to the norm (2.30).

If we put 8 = min, {5, } >0 and we remark that from
the constraint || Bx|| ,<E it follows that |x, | <E /B, we get,
for any x € K, {|x||x<(E /8)"|||x|||, so that

ll4x]ly<i4 !IXHX<\/'-§j 41 1]

Therefore, if we set Jp = AK , the operator 4 defines a con-
tinuous mapping of K onto J, when K is normed with the
norm (2.30) and J is normed with the norm of Y. The topo-
logical lemma already recalled,'* implies that the inverse
mapping from Jonto K ;- is continuous. Therefore, M (¢,E ),
defined by Eq. (2.3) with {-> = |||-|||, tends to zero, as

€ — 0, for fixed E; we can conclude that: When condition
(2.29) is satisfied, Problem (2.1), (2.2) is stable with respect to
the norm (2.30).

When 4 *4 and B *B are given by Egs. (2.18),(2.19), we
can get the following more precise result.

Theorem 2.5: If M (¢,E ) is defined by Eq. (2.3) with
<> = I-[ll, then

(2.33)

E

Sz ) S g ) e

kel kel e/ s

172 172
X a”z) + E( B ”2) ,
(k;‘/h. « kgfu. §

where I, is the set defined in Eq. (2.20).

Proof: By the three norm lemma'® we have for M (¢,E)
an inequality like (2.23) where now

( D a,i;xk;z)m«], (2.35)

kel 4
HEE)=su [ % | ( B2 |2)”2<E]
s = X s
2.36)

Then, by the Schwarz inequality (which is precise) we have

i
L(G,E):E( E ak—l) /2, H(G,E):E( Z k‘z)l/z
kel ) kel
(2.37)

(2.34)

L(eE)= sup{ > x]

kel

and the Theorem is proved.

We conclude with a result which is a modified version
of Theorem 2.5.

Theorem 2.6: If M (¢,E ) is defined by Eq. (2.8) with
<> = [lI-{{], then
M(E)= \/Ee( Y S S )/2.
K=o ay + (e/EYB?
Proof: Indeed, by the Schwarz inequality, we have

(2.38)

xe ke (A (/EVBL\2
kgo el = 2 (aﬁ+(e/E)2B§) %]

k=0
€ \2 172
< (=l + () 1)
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+ 1
_— ). 2.39
% (kZ:O a} + (e/E VB3 ) 239

Since the Schwarz inequality is precise, we get Eq. (2.38).

C. Methods of eigenfunction expansions

In the case where the operator 4 :.X — Yis compactand
the operators 4 *4 and B *B commute [see Egs. (2.18),
(2.19)], Eq. (2.6) takes the form
- + oo ak
X = R —— Vil s
k;) &+ (e/Eypr "
where v, = a,; 'du, [{v, },_% is an orthonormal basis in

range{4 }'?]. An approximation, even more simple than
(2.40), is given by
£ Vi

X = - uk,
k; 2 7%

Y= 0)n (2.40)

(2.41)

where the set /. is defined by Eq. (2.20) and y,, v, are as in
Eq. (2.40).

If X is any vector satisfying the conditions (2.1), (2.2),
then

4G —Dlly<V2e |BG=D|<V2E (242
indeed, if X, = (X,u),
4 & — B3 = > |9k — @i | + ; ai ||’
ek . kel , .
< 2 |V — QX J2
kel , .
€\? 2 2
+{—= B [ x5 | (2.43)
EJ [t

<42 iy + () IBsib<2e:

In a similar way one can prove the second inequality (2.42).
Therefore, we get

(F—5)<V2M(E), (2.44)

M (e,E) being defined by Eq. (2.3). We can conclude that, if
Problem (1), (2) is stable with respect to the norm or semin-
orm {->, both ¥ and X converge (in the sense of {->) to the
““true” solution of the problem, as € — 0, for fixed E.

3. PROBABILISTIC METHOD

Let us assume, as in Sec. 2, that the data vector y is the
sum of two terms, y = Ax + z, where x is the vector which
has to be approximately determined and z is an unknown
vector describing errors or noise; then, the basic point in the
probabilistic method is to consider the vectors x, y, z as the
values of random variables £, 7, £.'""¢
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More precisely, let (£2,.7 ,P) be a probability space, i.€.,
£ is an abstract point set, # is a o-algebra of subsets of {2,
and Pis a measure on & with P (£2) = 1; besides, let X, Y be
separable Hilbert spaces and let §:2—X, {:(2— Y be weak
random variables!” (hereafter shortened to w.r.v.), i.e., the
mappings &, § induce cylinder measures u, p, on X, Y, re-
spectively; then we consider the w.r.v. 77:£2—Y given by

7=AE+ ¢, 3.1)

where A:X— Y'is a linear continuous operator whose inverse
A ! exists but is not continuous.

If we assume that the joint measure of the pair of w.r.v.
£, & is know, then the problem is the following: Given a value
yofthe w.r.v. 7, find the best-possible mean square estimate
of the w.r.v. &.

Now, we assume (as it is reasonable in many practical
applications) that the w.r.v. &, { are Gaussian and indepen-
dent and that they have zero mean; in such a case their joint
measure is uniquely characterized by the covariance opera-
tors R;, R.. Then the covariance operator R, is expressed in
terms ong, R; by,

R,=ARA* + R, (3.2)

Besides, the w.r.v. £, 7 are not independent and their cross-
covariance operator is given by

Rey=RA* (3.3)
In the following we shall also assume that the inverse of the
operator R exists. Indeed, if this condition is not satisfied,
there exists a vector v, such that R Vo = 0; then, the random
variable (£,v,) y takes the value zero with probability one or,
in other words, the component of the data vector in the di-
rection of v, is not affected by error or noise. Since such a
situation is not realistic, we assume that the inverse of R,
exists. From Eq. (3.2) it follows that the inverse of the opera-
tor R, also exists; besides, range (R;) and range (R ) are both
densein Y.

The covariance operators R o R c have a role, in the pro-
babilistic method, similar to that of the bounds ¢, E and of
the constraint operator B in the Tikhonov-Miller method.
For this reason we assume that:R, = €’N, where € is a
“small” positive number and N:Y— Y is a linear bounded
operator independent of €.

A. The general method

If L:Y—X is any linear continuous operator, we call the
w.r.v.EL = Ly alinear estimate of the w.r.v. £. Then, for any
ueX, the reliability of the estimate for the random variable
(£,u), is measured by the mean square error (here E denotes
the expectation)

Q(u;Ly€)
= E{|(¢ — Lypuw)x |*)
= ([R:— RA*L*— LAR + LR, L *]u,u)y.
(3.4

If there exists a unique linear continuous operator L,:Y—X

514 J. Math. Phys., Vol. 20, No. 3, March 1979

which minimizes Q (u;L,€) for any ueX, then the w.r.v.

& = Lo is said to be the best linear estimate of the w.r.v. £.
We have the following result'”'":

Theorem 3.1: There exists a unique best linear estimate £
of the w.r.v. § iff the operator R¢, R - Y is bounded on the
range (R,); in such a case

Lo=Rg,R ,7‘ =RA*ARA* 4 €N (3.5)

Remark 3.1: If R has a bounded inverse, then the oper-
ator R, also has a bounded inverse. In such a case the prod-
uctR. R .~ 'is a bounded operator and therefore there is no
question in the interpretation of Eq. (3.5). On the other
hand, if the inverse of R, is not continuous, then R, R .~ 'is
the product of two operators where R, is bounded while
R, ! is unbounded and densely defined. [see Eq. (3.2)-we
recall that 4 ' is not continuous.] If R, R -~ ! is bounded on
range (R, ), then Theorem 3.1 states that L, is the usual ex-
tension (by continuity) of R, R = " to the closure of range
(R,),i.e., to the whole Hilbert space Y. For simplicity we still

denote by R, R, ' [as in Eq. (3.5)] such an extension.

Remark 3.2: If we consider the problem formulated at
the beginning of this section, then the solution is: Given a
value y of the w.r.v.7, the best possible mean-square estimate
of the w.r.v. £ is

X=RA*ARA* + EN)y. (3.6)

It is interesting to compare formally Eq. (3.6) with Eq. (2.6).

Ifweput N =7rand R, = E*(B*B)"'inEq. (3.6) and we use
the identity

(A*R '"A+R P 1)RgA *=A*R; AR A* +R,),

(3.7)

we see that, in such a case, Egs. (3.6) and (2.6) coincide.

Remark 3.3: In the case N = I (i.e., in the case where {
is the so-called “white noise”) there is an interesting inter-
pretation of the least-square estimate (3.6). We introduce the
operator T = R /24 * (recall that a covariance operator is a
bounded, nonnegative, self-adjoint operator), so that we can
write Lo = R ;/*T (T *T + €I )"'; besides we denote by
{74} §7% the set of the nonzero singular values of T, i.e.,
T*u, =1, Tv, = 7.0, where {u, |,/ is an orthonor-
mal basis in range (T') CX and {v, } ;% is an orthonor-
mal basis in range (T'*) C Y;'? then, from Eq. (3.6), by

means of the relation R }*u, = 7,4 'v,, we get
s T 172
X == VR uy,
kgo 7+ € £k
teo T2 .
=¥ Vi 0py (3.8)
K=0 Ti + €t

where y, = (y,v, })y. Now, the random variables

&= &R . u)x M= () y (K fixed but arbitrary)
are Gaussian and: E { |2} = 1, E{|n, )} =12 + €,
E { £} = 7;; therefore their correlation coefficient is
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r, = 7, (13 + €2 and their average mutual information is'®:
Je=JEm) = — (1 =) =7n(1 +73/e).  (39)

From Eq. (3.9) we get 72 (7% 4+ €)' = 1 — exp( — 2J;), so
that we can write Eq. (3.8) as follows
+ oo
¥= 3 (1—e Py, (3.10)
k=0
From this expression we see that the best linear estimate x
can be obtained, from the formal solution 4 'y
= 3/ % yiA vy, by means of a penalty on the coefficients
in terms of the amount of information on the random vari-
able &, contained in the random variable 7,.

Let us assume now that the w.r.v. £ has a finite variance,
ie, E{|I€|l}] < + o (recall that £ has a zero mean); as is
known, this condition is satisfied iff R £ is an operator of the
trace class.'” In such a case, we can try to define a “global”
mean square error in the estimate of € (by means of §, = L7)
as the variance of the w.r.v. £ — Ly, i.e,,

Q(L.e) = E{||§ — Lyl%}
= tr(P, — RA*L* — LAR, + LR,L*).

(3.11)

Q (L,e) is finite iff the w.r.v. Ly has also a finite variance.
Next we can define a best linear estimate f = L7, in the
sense of the mean square error (3.11), if there exists a bound-
ed operator L, which minimizes Q (L,¢).

We must distinguish two cases. The first is when the
noise § has a finite variance; then, from Eq. (3.2) it follows
that R is of the trace class and therefore the w.r.v. Ly has
also a finite variance for any bounded linear operator
L:Y—X. In such a case, if there exists a bounded operator L,
which minimizes Q (#;L,€) then it also minimizes Q (L,€) and
vice versa. The second case is when £ (and therefore also 7)
does not have a finite variance. Now, since the covariance
operator of Ly is LR L *, it follows that L7 has a finite vari-
ance iff the operator L is of the Schmidt class. Therefore,
there exists a best linear estimate in the sense of the mean-
square error (3.11) iff the operator R, R .~ ! has a bounded
extension of the Schmidt class.

B. Least mean-square errors

We can define the least mean-square error in the esti-
mate of (£,u) as

S(u,€) = inf [Q (u;L,€)]1"?, (3.12)
L

where Q (u;L,€) is defined by Eq. (3.4). If the best linear esti-
mate exists, then (3.12) gives a measure of the reliability of
the estimate; indeed, we have 6(u,€) = [Q (u;:Lo,€)]"% L,
being given by Eq. (3.5). After some simple calculations we
get

8(u,€) = ([R; — LoR, L 5lu,u) . (3.13)
In the general case (i.e., even if the best linear estimate does

not exist) we have the following result,"
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8(u,e) = ([1 — V*V IR *u,R Pu)?, (3.14)

where V:X—Y is the unique linear continuous operator
(with ||V ||<1) such that R, = R V2VR 2/2.

Remark 3.4: 5(u,€) has a role, in the probabilistic meth-
od, similar to that of the best stability estimate (2.3), with
(> = |(~#)| y, in the Tikhonov-Miller method. Indeed, if
we put N =TI and R, = E*(B*B)" in Eq. (3.5), from Egs.
(3.7) and (3.13) we get

S(use) = e([A 4+ (% )ZB *B] - lu,u);/z; (3.15)

this expression coincides, except for a factor of \/2, with Eq.
2.11).

The following result'' gives conditions which guarantee
that 8(u,€) tends to zero when e—0:

Theorem 3.2: If the operator R, = €’N has a bounded
inverse, then, for any veX

lim 8(u,e) =0 (3.16)
e—0

iff the problem
xerange(R [?), Ax=0 (3.17)

has only the trivial solution.

Remark 3.5: In the problems considered in this paper,
the inverse of the operator A exists; therefore problem (3.17)
has only the trivial solution.

The following result is the analog of Theorem 2.2:

Theorem 3.3: If the operator R, = €’N has a bounded
inverse and if the inverse of the operator R, exists, then

8(u,e) = 0(e), €0 (3.18)
iff ucrange (4 *N —'/?),

Proof: From the identity (3.7) and Eq. (3.13) we get

S(u,e) =e([A*N'A+€R ']~ 'uu)y? (3.19)

and, if we introduce the operator S = N ~'"24R [/, we can
write )

8(u€) = ([S*S+ eI ] 'RYuR u){>  (3.20)

At this point the proof proceeds like the proof of Theorem
2.2.

When the inverse of the operator R, = €’N is not
bounded, it seems that no general result on the behavior of
6(u,€), when €—0, can be derived; assumptions on the ranges
of the operators (4R 4 *)'/? and R [/> = N '/? have to be
done. However there exists an important case where as-
sumptions of this type can be proposed in a quite natural
way: We mean when both the operators R, R, are of the
trace class. In such a case the covariance operator R, belongs
to the same class and one can introduce the average mutual
informationJ (£,77) of the w.r.v. £,1."%** Our prescription is to
require thatJ (£,7) is finite [in the problem of Sec. 4, J (£,7) is
the amount of information about the object contained in the
optical image and the finite variances of £ and 7 are the
average energies of the object and of the image, respectively].
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According to the results of Baker'® one can give necessary
and sufficient conditions on the covariance operators R R,
in order that J (£,77) < + oo; if we take into account these
results, then the previous assumptions can be formulated as
follows:

D tr(R) < + o0, tr(V) < + 03

(i)4R A * = N'>SN /> where S:Y— Yis a linear oper-
ator of the trace class.

The following result holds'': if the assumptions (i), (if)
are satisfied, then Eq. (3.16) holds for any ueX, iff the prob-
lem (3.17) has only the trivial solution.

When the w.r.v. £ has a finite variance, we can consider

the mean-square error (3.11) and define a least mean-square
error as follows,

5(e) = inf O (L.e). (3.21)

If the assumptions (i), (ii) are satisfied, then it is possible to
prove'' that 8(¢)—0 when €—0.

C. Methods of eigenfunction expansions

We consider now the case where the operator A:X— Y'is
compact. We assume that the operators 4 *4 and R, com-
mute; the same assumption is done on the operators 44 * and
R,=¢€N.

If 4 and 4 * both have an inverse operator (such a condi-
tion is satisfied in the problems considered in this paper),
then all the singular values &, of 4 are nonzero; besides,
fug } % (the set of the eigenvectors of 4 ¥4 ) and {v, |, %
(the set of the eigenvectors of A4 *; v, = a; 'Au,) are an
orthonormal basis in X, Y, respectively.

Thanks to the previous assumption we can write

+ oo +
Rx= 3 pxu, Ry=¢€ Y vy, (3.22)
K=o K=o
where x; = (X,u, )y, Vi = V) -
Now, the operator L,, Eq. (3.5), is bounded iff
sup(a,ovi ') < + o0;" in such a case Eq. (3.6) takes the
form

& TP

X = ————— Vil (3.23)
Ko ap + €y
or a form similar to (3.10),
+ o .
i= Sa-eyy, (3.24)
k=0 a,

where now J, = %ln[ 1 + (aip,)/(€v,)] is the average mu-
tual information of the random variables
&= Gy and 7= (P00 y

As regards the least mean-square error (3.12) we have

+w 12
60 = ¢ 5 =P |wwy]?)

P yrn (3.25)
=0 QP Vi

and we see that: 8(u,€) tends to zero, when €—0, for any ueX,
without any further condition on the covariance operators
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R R,. Such a peculiarity is a consequence of the fact that,
now, the operators (4R,4 *)'/? and R }’* commute.

In the case where the w.r.v. £ has a finite variance
(ZF_opr< + =), we have, for the least mean-square error
(3.21), the expression

(3.26)

56) = 6( PiVk )1/2

k=0 (Z,%pk + fzvk
and we find that 8(¢) fends to zero when e—0. If we take
N=I(.e,v,=1)andR, = EXB*B)" (i.e.p, =E’B )
we get

5() = e( O — )1/2,

3.27
o al + (e/EVp2 3.27)

i.e., we obtain formally Eq. (2.38) except for a factor of \/E

An estimation, even more simple that (3.23) and similar
to (2.41) can be obtained as follows: We consider the class of
the linear bounded operators L:Y—X defined by
Ly=3, a7 'y, where I is an arbitrary finite set and
Vi = (1,0 y; then we look for the operator I:, in such a class,
which minimizes the mean square error (3.4). Now let us
consider the set

I = {k|ai>€(v/p)}; (3.28)
1, contains only a finite number of points for any € > 0 iff
aip,vi ' tends to zero when k— + oo. When this condition
is satisfied, it is easy to see that L, exists and it is the operator

corresponding to /. Therefore, given the value y of , we
have the following estimate of &,

(3.29)

Equation (3.29) can be obtained from Eq. (3.24) replacing
the factor 1 — exp( — 2J,) by 1 whenJ,>4In2 and by O when
Ji < 3In2.

The minimum of the mean-square error (3.4) over the
class of the operators L is

5 (u.€) = infQ (u;L.€)

ety

)y P+ S pe @) |
kel,

2
k

(3.30)

besides, when £ has a finite variance, the minimum of the
mean square error (3.11) is

5 () = infQ (Le)

(3.31)

Since the condition a2p, vy '—0, k— + oo is assumed, the
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expressions (3.30) and (3.31) are finite and we have the fol-
lowing results: (a) 6(u,€)—0, when €0, for any ueX; (b) if
the w.r.v. & has a finite variance, then 6(€)—0, when e—0.

In order to prove (a), we remark that Eq. (3.30) can be
written as follows:

~ + o
&*(u.€) = kzo 8,(€) | (wu)x |%
where 8, (€) = py, k€I, and 8,(€) = evia; %, kel Then
statement (a) follows easily observing that
5,(€)<p, for any €>0 and §,(e)—0, when e—0. Analo-
gously statement (b) can be proved recalling that, by as-
sumption, 2! % pp < + .

(3.32)

4. OBJECT RESTORATION

In this section we consider the problem of object resto-
ration for the optical system described in the introduction—
see Eq. (1.1); we recall that the problem is to estimate the
object x, given the image y on the interval [ — 1,1]. If we
assume that the object and the image have a finite energy,
then both x and y belong to L ?( — 1,1). Besides, the integral
operator A, defined as follows

(Ax)(t)=fl sin[c(z — 5)]

T x(s)ds,

lt]<1

@.1)

is a linear, compact, self-adjoint, nonnegative operator in
L?*(— 1,1);itsinverse 4 ' existsbutisnot continuous, i.e., the
problem of object restoration is an improperly posed prob-
lem. Therefore, we can apply the general methods of Secs. 2
and 3bysetting X =Y=Z=L*—1,1).

We give here a list of the main properties of the operator
A which are useful for our analysis:

(i) A is an operator of the trace class; indeed it is the first
iterate of the finite Fourier transform operator,' which is of
the Schmidt class.

(ii) The eigenvectors of the operator 4 are given by

u()=A4, " (ct), k=0,12,., |jt|<],

4.2)
where 1, (c,t) are the linear prolate spheroidal wavefunc-
tions' and A, = A4, (c) are the corresponding eigenvalues;
{u, } "% is an orthonormal basis in X = L*( — 1,1),

(iii) The eigenvalues A, = 4, (c) form a decreasing se-
quence: A, > A, > A, > -, bounded away from 1 and ap-
proaching O as k— + o . More precisely we have the follow-
ing asymptotic behavior

1 2k
A,\,:O[I(Ck—f’) ] k— + oo, (4.3)

which can be derived from the power series expansion of
¥, (c,t) as a function of ¢.??! Besides we have

+ =
Y Ax=tr(4) =2c/m. “449
k=0

We recall also that the eigenvalues A, have a step function
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behavior; i.e., the A, remain approximately unity for
k < 2¢/m while they fall off to zero very rapidly for k > 2¢/7r.
(iv) The eigenfunctions u,, for k— + oo, tend to the

corresponding Legendre polynomials, uniformly with re-
spect to te[ — 1,1]; more precisely?>

u, ()
*+p'7
=P(t) + a3 Py o8) + 0l P S(t)+ -,
4.5)
wherea}, =0k '), k—+ 0, 2r> —k.

(v) The linear prolate spheroidal wavefunctions ¢,(c,t ),
— o <t< + o, form an orthonormal basis in the space of
the L *-band-limited functions (i.e., the L >-functions whose
Fourier transform has a support contained in the interval
[ — ¢/2m,c/27)). In particular we have the following
expansion,

sin[c(t — 5)] g
- = c,t C 4.6
7t — ) kgo (et (c.s) 4.6)
and, by means of Parseval equality, we get
+ =
> |Ylet)|? =c/m. 4.7)
k=0

Then it follows the uniform bound
c \172
|¢’k(0’1)|<(—) y —oo<I<+w (4.8)
T

(this property will be used in the next section).

We proceed now to discuss the problem of object resto-
ration according to the methods outlined in Secs. 2 and 3.

First we analyse the Tikhonov-Miller method and the
case of “weak” stability and of “‘strong” stability [the cases
(i) and (ii) of Sec. 2B, respectively].

In the case of “weak” stability we can reconstruct only
some weighted averages of x, i.e., the functionals

l ———————
Gay= [ x@utd, Jull=1. 4.9)

From Theorem 2.2 it follows that we have a very good recon-
struction of the functional (4.9) if uerange (4 *), i.e., if (we
recall that now 4 = A4 *) there exists a vector

veX = L* — 1,1) such that

we) = ﬁlfﬂc—(i:ﬂu(s)ds, <1,

=) (4.10)

A function u as (4.10) is very smooth; indeed it is the restric-
tion to the interval [ — 1,1] of an entire function whose Four-
ier transform has a support contained in the interval
[ — ¢/2m,¢/27]. Moreover, if the operator B has a compact
inverse, then we can say that M (¢,E ) tends to zero uniform-
ly with respect to # (on the unit sphere) since we have
M (¢,E)<M (¢,E),where M (¢,E )isdefined by Eq. (2.3) with
&> =IHe

Next we come to the case (ii), i.e., to the “strong”
stability.
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First let us observe that, for any vector xeX we can
always find a constraint operator B like (2.19), with
lim,_, B, = + o, and a positive number E such that the
vector x belongs to the compact subset of
XK= {XeX |||Bx|| x<E }. Besides, if we recall the proper-
ties of the linear prolate spheroidal wavefunctions, we can
interpret the constraint (2.19) as a condition on the concen-
tration of the finite Fourier transform of x.2 Then one can
easily understand that the goodness of the reconstruction of
x is as much satisfactory, as far as the finite Fourier trans-
form of x is concentrated in the interval [ — ¢/2m,¢/27), or
equivalently as rapidly as the 3, tend to infinity.

Now we take B = 4 7, i.e, we assume that the object x
belongs to range(4 }—see Eq. (4.10); therefore, condition
(2.19) holds with B, = A ;! and Theorem 2.4 can be ap-
plied. We see that in this case we have very satisfactory be-
havior of the stability estimate when e—0 (Holder type sta-
bility). We can understand this result if we note that we are
considering a class of objects whose finite Fourier transform
is rather strongly concentrated in the interval
[ — ¢/27,c/27). Bowever, usually, it is too restrictive to as-
sume that the object belongs to this class. It is more interest-
ing to suppose that the eigenvalues 8, grow like a power of k
for k— + oo. Let us spend a few words in order to justify this
assertion.

From property (iv)—Eq. (4.5)—of the linear prolate
spheroidal wavefunctions it follows that

X, = Xu)y=00(x2), k—>+ o, 4.11)
where
b
X0 = (k + H\2 J X(t)P, (¢ )dt. 4.12)
-1

In other words the asymptotic behavior of the coefficients of
the expansion of x as a series of linear prolate spheroidal
wavefunctions is given by the asymptotic behavior of the
coefficients of the expansion of x as a series of Legendre
polynomials.

Now suppose that x has continuous derivatives up to
the order m and vanishes outside the interval
[—1+48,1 —8](5>0, fixed but arbitrary), then the coeffi-
cients x, decrease, for k— + o, at least as k — ™. Indeed, by
means of a well-known asymptotic formula of Legendre
polynomials® (valid in the interval [ — 1 + 8,1 — 8]), inte-
grating m times by parts, it is easy to show that

J T XOPdi= 0K ~ ), “.13)

— 146
so that, thanks to Eqs. (4.11)and (4.12), x, = O (k ~— ™). Asa
consequence of this remark, we can conclude that, if we take
B, = k* in Eq. (2.19), then the set K, = {XeX ||| BX|[x<E }
contains functions which vanish outside an interval
[ — 1+ 8,1 — 8] and whose derivatives are continuous up to
the order m>p + 4.

We have now the following result:

Theorem 4.1: If, for k > 2¢/m, B, = yk* (y,u > 0), then
there exists functions F;, F, such that
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€
EFI( = )<M(€,E)<EF2( % ) (4.14)
[where M (¢,E ) is defined by Eq. (2.3) with (- = ||-|| ;] and,
for e—0

Fi(€) = O(|lne| =), Fy(e) = O(|lne| ~# ~ "), (4.15)
where 77 may be taken as small as desired.

Proof: If we recall the step function behavior of the ei-
genvalues A, and the increasing behavior of the constraints
B for k> 2¢c/m, we can assert that the set I, Eq. (2.20),
contains all the values of k until a certain k, > 2¢/, provided
that the ratio €/E is sufficiently small. Therefore, in Eq.
(2.22), Theorem 2.3, we have
a(e/E)=A,, B(e/E)=y(k, + 1) and, from the
inequalities

A>

vk, (ko+ 1¥'>kG,

ST

we get

E k4 1y M) L gn (.16)
2y 4

k. is a function of the ratio ¢/E. In order to prove the theo-
rem we have to show that there exists an upper bound for &,
which is O (|in(e/E)|), and a lower bound which is
O(|In(e/E)|' ~ ™), where 7 may be made as small as desired.

First we find an upper bound for &,. Property (iii), and
more precisely, Eq. (4.3), implies that there exists, for fixed c,
aconstant ¥, such that A, <y,exp( — k), k> 2¢/7; then, if we
setk, = sup|k |y.exp( — k )>(ye/E)k*], wehave k,<k,.On
the other hand, &, = [y,]; here [y,] denotes the greatest inte-
ger such that [y,]<y, and y, is the solution of the equation:
x1 Mexp( — x)) = (1:€)/(YE). It is not difficult to see that,
when €0, y, = O (|In(¢/E)|) so that, from the first half of
inequality (4.16) we get the first half of inequality (4.14).

Then we find a lower bound for &,. Equation (4.3) im-
plies also that there exists (for fixed ¢) constants ¥, & such
that A, >v.expl — (k)' 741, k> 2c/m, where § may be
made as small as desired; then, if we set
k, = sup{k |y, expl — (k)" * °1>(ye/E )k *} we have
ko> k,. On the other hand, k, = [y.], where y, is the solution
of the equation y; “exp( — y3 ™ %) = (y€)/(3.E). It is not
difficult tosee that, when €0, y, = O (|In(¢/E)|' ~ ", where
7 = 8(1 + 6)" and, from the second half of inequality (4.16)
we get the second half of inequality (4.14).

Theorem 4.1 can be interpreted by saying that, when we
do not make too restrictive assumptions on the unknown
vector x, then the restored continuity in the problem of object
restoration is, at most, logarithmic.

Now we come to the probabilistic method. As regards
the least mean-square error 5(u,€), it is enough to observe
that it has properties very similar to the best stability esti-
mate M, (¢,E ) (see, for instance Theorem 2.2 and Theorem
3.3).

It is more interesting to analyze the least mean-square
error 6(¢). If we consider the case where all the operators 4,
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R, R are diagonal, then 8(¢) is given by Eq. (3.26) with
a, = A;. now 8(¢) is finite if R, is an operator of the trace
class, i.e., if £ has a finite variance. This assumption means
that we are considering a class of optical objects whose aver-
age energy is finite. The same assumption is reasonable for £;
if we normalize the operator N in such a way that tr(N) = 1,
then € is just the average energy of the noise. We can easily
find upper and lower bounds for 5(e) if we further assume
that A 2p, v '—0, k— + o [i.e., we suppose that the
amount of information on the component &, = (§,u, ) of
the object, contained in the corresponding component

7, = (17,4, ) of the image, tends to zero for k— + co—see
Eq. (3.24)]). Now we can say that the set I, Eq. (3.28), con-
tains only a finite number of points and we have the follow-
ing result,

0:(€)<8()<bule), (4.17)
where
v \172 172
ol€) = -y . 4.18
o=z 3) +(Zp)  w

The inequalities (4.17) follow from Eq. (3.26) when we ob-
serve that:

kel 1 % \____f"v"_ < i, (4.19)
202 Ap+éev, A%
v
ker, LPho PRk Pk (4.20)
2 é A %ka + 62Vk €

Now, the eigenvalues A, decrease for increasing k; more-
over, if the signal to noise ratios p, /v, also decrease (at least
for k > S), then, for € sufficiently small, we have

60(e)=€( i ;_2)1/2+( +§ Vi )1/2

2
K=0 k=F+18%

€ 1
g_ + 3
;Lkn Bkn+1

4.21)

where B2 = v,p, . As a consequence we see that, if the
signal to noise ratios decrease like an inverse power of &,
pwvi | = (constant)-k ~ %, then 8,(€) is bounded by a func-
tion which is O(|lne| ~#( = ™), for e—0 (1 may be taken as
small as desired; the proof is just the same as in Theorem
4.1).

5. IMAGE EXTRAPOLATION

The problem of extrapolation of optical image data has
been already considered;® in that paper a stabilization condi-
tion was imposed by requiring the boundedness of the total
energy of the image. Here we prefer to reinforce the stabiliza-
tion constraint, requiring explicity that the functions, which
we want to extrapolate, are optical images corresponding to
objects whose energy is finite and bounded by E. Moreover,
observing that the magnification of the optical system de-
scribed by Eq. (1.1) is one, we assume that these optical im-
ages are measured in the interval [ — 1, 4 1]. In this case we
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can show that the restored continuity, in the problem of ex-
trapolation of an image piece beyond its borders, is of the
Holder type. Let us remark that this result holds true only if
the images, which we want to extrapolate, are approximately
known in an interval which is equal to the support of the
object. Otherwise, if the images are measured in a smaller
interval, it is reasonable to conjecture that the restored con-
tinuity is not of the Holder type, but weaker.

The problem of image extrapolation can be formulated
as follows: Let x = x(t), — o <!< + o, be a squareinte-
grable band-limited function, i.e.,

c/2m )
e?" " (w)dw.

xeL(— w, + ®), x(t)= f

— /27

(5.1)

Let Ax be the restriction of x to the interval [ — 1,1], and

y = Ax + z the image measured in the interval[ — 1,1]; z de-
scribes the experimental errors. Then the problem of image
extrapolation is to estimate x given y.

Now, in order to apply the methods of Secs. 2 and 3, we
must specify the spaces X, Y, and the main properties of the
operator 4.

In L3 — oo, + oo) let X be the subspace of the band-
limited functions (5.1); since X is closed, then it is a separable
Hilbert space with respect to the inner product of
L — w0, + ). Besides, let YCL * — o, + o) be the
(closed) subspace of those functions whose support is con-
tained in the interval [ — 1,1]; Y is also a separable Hilbert
space and is isomorphic to L ( — 1,1). Then 4:X—Y is the
operator defined by

(Ax)(t) = x(t), Ux)() =0, |t|>1. (5.2)

A is a compact operator of the Schmidt class; in other words
the operator A4 * is of the trace class. At this purpose, let us
remark that the adjoint 4 *:Y—JX is given by

U*)E) = J'il sinfe(t — s)]

(it —s)

lt]<1;

y(s)ds, ye¥, (5.3)
as easily follows from the identity for band-limited functions

"= sinfe(t — 9)]
x(t) = f,, 3 _——v(t 5 x(s)ds, xeX. 5.9

Indeed, from Egs. (5.3) and (5.4), we get, for any x€X, ye?¥,
(4xp)y = (x,4 *p) . Then, from Egs. (5.3) and (5.2) we ob-
tain that the operator A4 * coincides with the operator (4.1)
which is of the trace class, as it was shown in Sec. 4.

Next we want to show that all the singular values of
both the operators 4 and 4 * are nonzero. In other words we
want to prove that: The equations Ax = O and A *y = 0 have
only the trivial solutions x = 0 and y = 0, respectively. In-
deed, Ax = O means that x is a.e. zero in the interval [ — 1,1];
since x is an entire function, we conclude that it is zero on the
whole ( — w0, + o). Analogously 4 *y = 0 means that the
Fourier transform of y, i.e., J, is a.e. zero in the interval
[ — ¢/2m,¢/27]; since j is an entire function, they y is zero on
the whole ( — oo, + ), i,y =0.
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Now, let us denote by {u, ]
tors of the operator 4 *4 and by {v, }
vectors of the operator 44 *; {u, } /_% is an orthonormal
basis in X and {v, },'_% is an orthonormal basis in Y. If we
recall that 44 * coincides with the operator (4.1) we have

“k(’)='/’k(c»t), |t|< + o;

“5 the set of the eigenvec-
5 the set of the eigen-

v(t) =24 Y (et),
k=012,

[t (5.5)

¥ (c.t) being normalized to one with respect to the norm of
L*(— o, + co)—seealso property (v) of Sec. 4. The vectors
u,, vy satisfy the relations

Auy = \/'{k v A*v= \/’{k U k=012,

(5.6)

At this point we can specify the stabilization constraint.
We assume that the unknown vector x belongs to a class of
optical images corresponding to optical objects whose ener-
gy is finite and bounded by E,

1 .
so= [ S a0 pr1< 4o,
-1 7(t—s)
1
f [u(s) |ds< E?, 5.7
—1
i.e,, x = A *v, ||v||y<E. This condition can be written in the

form (2.2) if we take B = (4 *)'. Since the operator

(B *B ) = A *Aisofthetraceclass, the problemisstable with
respect to the norms or seminorms considered in Sec. 2. Be-
sides, from Theorem 2.4, it follows that

MEE)<V ¢E, (5.8)
where M (¢,E ) is given by Eq. (2.3) with
+ o0 172

w=la=( [ xeopar) 59

The approximation for the unknown vector x is then given
by

3/2

% z S —— , 5.
(t) “o (/ )2y ¢’k( t) ( 10)
where
=(W0)y= 1_ Jl (t W (c,t )dt (5.11)
Yk WklY ‘\/ ) ly K\t . .

Thanks to Eq. (2.7), X gives an appfoximation to the un-
known image x [in the sense of the norm of L *( — o0, + »)]

with an error which is of the order of \/; (Holder
continuity).

Now, if we consider the best stability estimate M (€,E),
given by Eq. (2.3) with

=] = | [ xeuyae |

JN lut)|dr = 1, (5.12)
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then, from inequality |(-, )y |<||+||x and Eq. (5.8) we obtain
M (e,.E)<M (e, E)XV €E . (5.13)

Inequality (5.13) means that, if one pretends to reconstruct
only some weighted averages of x, then the error is, at most,

of the order of V e. The situation can be more favorable if
one takes uerange(4 *)—see Theorem 2.2,

Finally we come to thenorm |||-||| defined in Eq. (2.30).
Such a normis interesting in the problem of image extrapola-
tion, since it is stronger that the uniform norm. Indeed, from
inequality (4.8) we have

Il =suplx()|< ST [x, sup|#(ct)]
t K=0 t

<Verm x|l (5.14)

As a consequence, any stability estimate for M (¢,E ) with
<-> =|[+||] is a stability estimate for the uniform conver-
gence. Now, from Theorem 2.5, we have

M(eE) = \/26( Z —————Ak )/z.

5.15
—Ollk‘f-(E/E)z ( )

Then, from the inequality
Then, from the inequality #*<C,_(t* + 1)
[t>0,0<a<1,C, =a*(l —a)' ~*],withO <a <, we have

HeE)V2ec( Fap = ) (L)
k=0

E

~Vor, g (-2—)“

(5.16)

where I', < + « is @ < 3-—see Eq. (4.3). If we denote by
M_ (¢,E) the best stablhty estimate (2.3) with {-> = ||-|| . ,
then we have the result

M _(e,E )<(constant)E (%)“ (5.17)

where a is any number between 0 and 1.

Now we come to the probabilistic method. The stabili-
zation constraint (5.7) can be translated in a probabilistic
language by saying that there exists a Y-valued w.r.v. w such
that § = A4 *w; therefore, one has: R, =4 *R A and the
w.r.v. £ has a finite variance.

We have the simplest case assuming for R, and R, the
following expressions,

R,=EY, R,=¢l, (5.18)

where I is the identity operator in Y. Then it is easy to verify
that, in this case, Eq..(3.6) gives Eq. (5.10). Moreover, since

tr(R,) = E*tr(4 *4) = E* Z Ay = Re/ME? < o—see
Eq. (4.4)—both the least mean square errors (3.25) and

(3.26) can be analyzed; more precisely we obtain
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+ o A 172
5(u,6)=6( S k |(u,uk)X|2> (5.19)

Ko A2+ (/E)

and

+ o A k 172
8(e) = e( D — ) . (5.20)
K=o A+ (e/EY
Then we have
5(u,e) =2"">M (¢,E) and 8(¢) =2~ °M (¢,E )—see
Eq. (5.15)—and therefore the results previously obtained for
the best stability estimates hold true also for the least mean-

square errors.

Next we assume in Eq. (3.26), p, = E*A,w,, with the
condition X' % w, = 1; furthermore we assume, for the
noise, the condition =;_% v, = 1. Then 8(¢) reads as
follows,

+ o w.v 172
56) =e( 5 ki ) . (5.21)
K=o wA § + (€/E Vv,
From the inequality used in Eq. (5.16) we get
T ool T A2
5(e)<C ;/ZG”E"“( 5 -“-’i—-—i) (5.22)
Ko A

with O<a< 1. The series at the rhs of Eq. (5.22) is certainly
convergent for 0 < a <4 (in the specific case @ = § it becomes

35 Vw «Vix <1). The series can also converge for & > 4 if
the sequence { (v, /w, )*A .~ **} % is bounded; in the latter
case we have a stronger Holder continuity.

6. CONCLUSIONS

The main result of our paper is the proof that in the
object restoration problem, the continuity, in most realistic
cases, is at best logarithmic. This result derives essentially
from the rapid exponential fall of the eigenvalues A, of the
operator A. Now we can try to extend this result. In fact an
asymptotic behavior of the same kind [more precisely
A, = O(exp( — Dk Ink )) where Disa constant] holds true for
every integral operator whose kernel is an entire analytic
function of finite order.” So we may argue that we get at best
logarithmic continuity whenever, for inverting such an inte-
gral operator, we impose a priori bounds on a finite number
of derivatives of the solutions. Analytic kernels are involved
in some inverse problems such as the near-field reconstruc-
tion,*® or the Bojarski-Lewis inverse scattering method
when one has information only over a finite frequency band
(bandpass kernels).*
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A set of operators which are associated with the Euler—Lagrange operator is introduced. An analysis of
the commutation properties of these new operators, which will be referred to as the higher Euler
operators, leads to a generalization of the necessary conditions for an expression to be an Euler-Lagrange
expression. A product rule is derived for the higher Euler operators. In the special case of the
Euler-Lagrange operator this product rule is basic to simple proofs of sufficiency theorems for the
existence of a Lagrangian given the potential Euler-Lagrange expressions. By considering a certain
homogeneity property, a characterization of Lagrangians in terms of their Euler-Lagrange expressions is
established. Examples of applications of this characterization are given. A general procedure is given for
constructing equivalent (not necessarily scalar density) Lagrangians when the field functions are tensorial
and the Euler-Lagrange expressions are tensor densities. These results give particular significance to one

of the higher Euler operators.

INTRODUCTION

The purpose of this paper is to introduce and examine a
collection of operators which arose in the consideration of
necessary and sufficient conditions for the existence of a La-
grangian in field theoretic variational problems. These oper-
ators can be viewed as generalizations of the Euler-La-
grange operator and will be called higher Euler operators. In
addition, a constructive approach to the inverse problem in
the calculus of variations is developed and applied to par-
ticular examples. We shall concentrate on the local form of
the various operators and functions involved, obtaining re-
sults within the domain of an arbitrary chart of some
manifold.

In Sec. 1, the notation used throughout the paper is
presented and the higher Euler operators are defined and
briefly discussed. The following section is a detailed analysis
of the commutation properties of these higher Euler opera-
tors. It leads to identities for Euler-Lagrange expressions
and an interesting relation between the first Euler operator
and the Euler—Lagrange operator. An identity, based upon
the Euler-Lagrange expression of a product, is obtained in
the third section. It gives rise to very simple proofs of certain
sufficiency conditions for the existence of a Lagrangian
when given expressions which are possibly Euler—Lagrange
expressions. The analysis of the inverse problem in the calcu-
lus of variations is continued in Sec. 4 where a constructive
procedure for obtaining its solution is formulated in special
cases. In the final section, methods of obtaining Lagrangians
equivalent to a given Lagrangian are presented, giving added
significance to the first Euler operator.

1. Definitions and Notation

Our considerations in this paper will be based upon an
n-dimensional C * manifold M. If (U,x) is a chart of M, then
x ! i =1,...,n will denote the coordinates and the notation ,
will be used to denote partial differentiation with respect to
x'. The major concern of this paper is real valued functions of
M which on the domain U of a chart of M take the form

F:F(pA;pA,i;"';pA,i.u-i(,;/lﬂM'!),i;u-;/{fl,i‘mi‘,') (L1
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In (1.1), the p ’s and the A ,’s are field functions on M
pa=p(x)A=1,. ,Nandi,=A1,(x),02=1,.,N')and
the function F'is assumed to be a differentiable concomitant
of the field variables (e.g., for all 7 =0,1,2,..., c?F/&pA,i‘m,"_
exists and is continuous). It will not be assumed that the field
functions are tensorial or that any relation exists between
field functions defined on two charts which intersect (unless
specified otherwise). We demand that given any particular
chart (U,x), there corresponds a set 7 (U x) consisting of all
field functions of the form {p ,(x);4,(x")}. The set of all
concomitant functions F of the form (1.1) (for all values of &
and &), will be denoted by . (#(U,x)). Note that any ele-
ment of % (2 (U,x)) is of finite order in the derivatives of the
field functions.

Toillustrate the above notation, we consider the follow-
ing example. On a chart (U,x), take
Pax) = (g (x), I j (x7)) and A5 (x) = (¢{x7)), where
g8(x, I 1(x%), and ¢(x?) take on x-component values of
metric tensor fields, linear connections, and vector fields,
respectively, on M. Then the x-components T ¥ of a tensorial
concomitant of the form

T9=T%g, sl I 5w

st,u»

constitute »? elements of 7 (2 (U,x)).

If Fe.¥ (Z (U,x)) [some (U,x)] then the notations
FAoh — oF /dp,,;..; for =12, and
Fitivio, — Fid. — JF /3p , will be used. The summation con-
vention will be invoked for repeated capital and small Latin
indices and repeated capital Greek indices in any term of an
expression (e.g.,
TA’i"HidPA,il---i,,: =3 127, 0= ITA'i“..i(’pA,i,--»i,,') Defining
the differential operator D, on .# (Z(U,x)) by

DF.= Y (F*py i+ F* g (1.2)

a=10

for Fe.7 (% (U,x)), we see that in (Ux), F(p4i0)
= (DF)(p.4A)- The sum to infinity in (1.2) must stop at
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some finite a since by definition F is of finite order in the
derivatives of p , and A,. This technical convenience will be
used repeatedly in the paper. Note that for each /, D; maps
F(# (U.x)) into itself.

The primary concern of this paper is the Euler-La-
grange operator which takes the form

EAF):= 3 (=D, F*, (1.3)
a=0
for Fe¥ (% (U,x)), where D, F: = Fand
D, ,:=D,D,D; (a=12,). Clarly if Fe5 (Z (Ux)),

then for each 4, EA(F) is also in % (Z(U,x)). One obtains
useful generalizations of the Euler-Lagrange operator by de-
fining the ath Euler operator (@ = 1,2,.--) by

EA.i.---i,,(F): — i (— l)ﬁ(i>Diu . lm[/f;A,i.-..m’ (1.4)
B=a

where Fe# (Z(Ux)), D; .. F:=F,and ()
= B/(a!(f — a)!). We extend (1.4) to ¢ = O by setting’
EA4Y(FY: = EAF).

[ I

Clearly, knowledge of the partial derivatives F “for

a = 0,1,2,- serves to determine E *""*(F) for any

B =0,1,2,-- via (1.4). An interesting property of the set of
Euler operators is that the converse also holds. In the follow-
ing proposition and the remainder of the paper the conven-
tion (%): = 0 for a > B will be employed.

Proposition 1.1: For any Fe% (2 (U,x)) and all
a=012,..

Feri=$ o

Proof: Substltutmg from (1.4) for the Sth Euler operator
in the right-hand side of (1.5) we obtain the expression (let F
be of order ,u in the derivatives of p A)

Upon mterchangmg the order of summation in the above we
deduce the expression

ﬁ‘, [ﬁ‘, (— )”B( )(;) ]D,—M,...,-7F""""""7'. (1.6)

Due to the fact that

3 o B)0)-

(1.6) equals the left-hand side of (1.5), proving the proposi-

LENME) (1S)

if y+#a,

7o (1.7)

tion. The identity (1.7) is a special case (y = 0) of the follow-
ing lemma which will be useful later.
Lemma 1.1:
A ¥ e B\(r—7
-0, 2)= 2 ()G s
o D)= 3 r)ET)) fr
7T — y>20.

Proof. Expanding the expression [1 + x(1 + )"~ 7
X(1 + p)" via the binomial theorem and rearranging the or-
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der of summation we obtain

[1+x(1+»]"" A +y)"

agoy z xB- r(ﬂ ’;)(fj) (1.8)

Settingx = — lin ( 1.8) implies, upon expanding the left-
hand side of (1.8), that

o 3 AL

a=1—Y

-Srs ()G 19)

a=0 a

Comparison of the coefficients of y*, & = 0,1,...,7in (1.9)
establishes the lemma.

Thus the set of Euler operators can be used to complete-
ly determine an element of .# (% (U,x)) (up to a constant
function) in the same sense that the various partial deriva-
tives do. (For this interpretation we take Z(U,x): = {p,}.)
The advantage of the Euler operators is the fact that the
Euler-Lagrange operator E/(.¥) is a tensor density when-
ever the p /s are tensorial (or partly linear connections) and
when . is a scalar density.? The higher order Euler opera-
tors do not possess this property and do not appear to be
tensor valued (of any type) except in a few special cases.
(E.g., T a tensor of ath order in derivatives of p, implies
E A'i""""(T ) is tensor valued if p , is a tensor or linear
connection.)

2. Commutation Properties of the Euler
Operators

One of the main theorems of the paper is proven in this
section. We begin with two lemmas which are fundamental
to its topics.

Lemma 2.1: If Fe.% (7 (U,x)), then’
Advd, Ao Aiin i)
D F)* = DFA) L F 5

a =0,1,2,-. [In particular (DF)* = D(F*)] ]

The proof of Lemma 2.1 follows easily from the defini-
tion of D,.

Lemma 2.2: If Fe¥ (% (U,x)), then
[D'l"'ju(F)];A'il‘”i"

a ﬂ . —
- zo (7/) [D(i|":f/4 )'51(-11I i 6]/;7F A )] (21)
y=

for all ¢, =0,1,2,...
Proof: We use induction on 3. The case S = 1 is given by

Lemma 2.1. Suppose (2.1) holds for all 8 = 0,1,...,7 — 1. For
B = 7 we have, from (2.1), that
[Djes I
& T—1 . i A vd
- 2 ( )D("Jr ¥ ]61({' y’““sjz |)('Der)yA, o ")'
y=0 I
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Applying Lemma 2.1 we deduce from the above equation
that

[DIJ,(F) ] Aded,

=D, (F*" "+ ¥

y=1

7—1
( y )Dlr(lllr v o1

i i A i) 7—1
X80 -8 |(F )+ (1,_ I)D(i,---jr ,

(A i 1 gl ;A’il‘ll."irl)
X8 Lo NO(F ), 2.2

where we have relabeled the summation index in the last
term. Equation (2.1} with 8 = 7 now follows from (2.2) after
noting that the term in brackets under the summation sign in
(2.2) is equal to

T i A, i)
(y)D(hJ, 1'6}r i 1..-5jr)(F ) D’
With the aid of Lemma 2.2 we may establish the follow-
ing proposition:

Proposition 2.1: For any Fe ¥ (% (U,x)) and any
a,B8 = 0,1,2,~ the identity

E A‘j,...jﬁ(F);g,,',..,iu

_ 2“: (B + V)EAJ,-~-j,,(i.~-~i),(F;B,i,,. ,A--i(,))
y=0

3
B 23)

holds.

Proof: The definition of the Sth Euler operator along
with Lemma 2.2 imply that

EAJ|~-'j/x(F)iB'i"“if:

SPETL M bt (i I
5o

X (F sAdid, i By ""[“)) -+ z

& T‘ﬂ A, . il Boi, , (oreic)
X ( )Djﬁ.lmj, (AR ),
o\ ¥

Upon changing the order of the sums in the first term on the
right-hand side of the above equation we can combine the two
sums in that equation to find that

E AJ:‘“fB(F)Byiv"iu

=B+v
X (F Ao, fheei B, 1"'1',1))‘ (24)
In view of the identity

G -03761)
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and the definition of the uth Euler operation, (2.3) follows
from (2.4). [

Itis well known? that the Euler-Lagrange operator anni-
hilates expressions of the form D.F ', where F ‘e 7 (7 (U,x)).
This result can be generalized to yield the next proposition.

Proposition 2.2: If F'e.7 (# (U,x)), then for 7 = 1,2,3,--

EAJx"J'r(DiFvi) - _ EA'(jl'"jr I(FJ'T)).

Proof: From the definition of the 7th Euler operator

(1.4) and Lemma 2.1 it follows that

EAJ'.“].T(D,'F")

3 o BAJi
=3 (— J)H(T)D,,j” I

a=rT

o0 a ;. i
+ 2 (= I)U(T)Djﬂ g F O,

a=r71

Expanding the second summation in the above and re-
arranging terms we find that

EAJV"L(DPF:')

0O f24 i ,\MA}
= 2 (_ I)Q(T)Dij” lmj,,F A,

) a—1 g
+ 2 (—1)“( , )DJY}I...,‘,,FW‘J""J" ]

a=71+1

00 — 1 ;o . . . -
+ Z [( _ l)a(‘:_ I)Dj,, lmj"F(InAJz"‘]f)Jm 1":/«]_

In the above, the first and second terms on the right-hand

side cancel while the last term gives — E AGrd- (F’ ')),

proving the proposition. Note that the proof also works for

7 = 0 upon defining (*_,) =0, ¥ = 0,1,---. This gives

EADFH=0.l1

Proposition 2.2 forms the basis of the following:
Proposition 2.3: If Fe5 (Z (U,x)), then for all

a3 =0,1.2,-,

E Ay, [E B,j.-uj,,(F) ]

=(— ])5 i (ﬂ ; Y)EA,(;',...[,, 7'[(F;B\jl"'j/{[i(r v 1---1},)).

Proof: The proof is inductive in nature. From Proposi-
tion 2.2 we deduce that

y="0

E i g IRy

=(_ l)ﬁ EA'i".‘i"(F;BJ'...jB) _ i
n=B+1

(- lr—ﬂ(g)

XEAv(ix""'« - ||(D FBJI"'j,‘ ||i<.))]
i .

g de o
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Now suppose that for 1<7 <,
EA'ilmi" [E B,j,...j”(F)]

_(_1)ﬁ Z (B+/L) A, (yoeedy, |(FBJ. Jplie e 1))]
+ ( - I)T[ 2 ( - 1)"@ A e ]/u 1Y
u=8+r
XF;BJI"'j,, Al o 1"'1'(.)]‘ (25)
Proposition 2.2 now implies that
EA,i,-nl',,[E BJ:"'f/x(F)]
— (-1 2 (B +#) Aoy (iBinli ooy

4 (ﬁ; T)EA,(:‘.---:;, A Bivdnlic o ""i"))]

+ [( — ! i (- IV(Z)EA’(i”"i" a
p=pg+r+1
XD, ., . FHI ),

We have shown that (2.5) holds for 7 + 1 whenever it holds
for 7( < @) and since it holds for 7 = 1 it holds for all r<a.
When 7 = a the above equation implies the Proposition. L]

With the aid of the previous propositions we may estab-
lish the main theorem of this section.

Theorem 2.1: For any Fe.% (% (U,x)) and any integer
0<a<7, where 7 = 0,1,2,..-, the identity

EA.(i,-ni(,[EB,i(, . ""i’)(F)]

Z (— 1)~ a( ) Ay iy By

y=a
holds.
Proof: From Proposition 2.3 it follows, upon relabeling
the summation indices, that the left-hand side of (2.6)
becomes
D 4
(-1« 3 (

y=717—a T—a

From Proposition 2.1 we deduce that
E A l---i,(F);B,i,nJ),)
— i ( H ) EAC i (B )
p=r—y TV

and thus the right-hand side of (2.6) becomes

(2.6)

)E"""w A EPREY O 7)

S 3 () (Tfy)E"""*w-'""f(F"”""'""*“))-

Yy=ap=717—Yy a

In order to compare this last expression with (2.7) we relabel
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the summations to obtain the expression

5 2 [

V) EA'('." s 'mi’(F;B'iIMi")).
—av= Y
Changmg the order of summation in the above expression we

deduce that the right-hand side of (2.6) is equal to the

expression
V) #A,(iv . l~~~i,(F;B.i,-~~i‘,))
1L

s[5 () (2
(2.8)

v=20
The equality of expressions (2.7) and (2.8) now follows from
Lemma 1.1 and the fact that

(T — v) _ (r - v)
r—v) \y—v/
proving the theorem. O

An important corollary to Theorem 2.1 is the the fol-
lowing result due to Anderson**:

Corollary 2.1: If Fe# (2 (U,x)), then E 4(F) satisfies
Al, [EB(F)]_EA(F)BJ -f,
foralla = 0,1,2,3-[]

Theorem 2.1 can be bypassed in proving Corollary 2.1
by taking the cases S = O in Propositions 2.1 and 2.3. The
importance of Corollary 2.1 is that it gives necessary condi-
tions for a collection of functions T¥e.% (2(U,x))
[(2(U,x)) = {p4}], to satisfy in order for there to exist a
function Le.% (2 (U,x)) for which T* = E“(L ), namely

E*" (T By = T*5" " for all @ = 0,1,2,-. These condi-
tlons can be applled to concomitant problems related to
gravitation and other field theories.®’ They are also basic to
the study of conservation laws related to tensorial Euler—
Lagrange expressions.**7

An interesting consequence of Theorem 2.1 is based
upon the identity (set 7 = a + 1 in Theorem 2.1)

EA (F):Bvir"i..

- Y AG(pyBisi) _ pAGei [ gRIYEY]}, (2.9)
a

where a = 1,2, If T*'e% (2 (U,x)) is a set of functions for
which there exists an Fe.% (2(U,x)) such that

T*" = E*(F), then the equations
T ABdvi, _ _l_[ TAGBE) _ pAGe (B ]
a
(2.10)

(fora = 1,2,..), form an integrable system of partial differen-
tial equations for some functions 7% (2 (U x)). It is clear
from (2.9) that 7% must take the form

TA=EA(F)+ T4, @.11)
where T3 = T §(pz). Hence knowledge of E*(F) essentially

determines E4(F) via (2.10) and (2.11). The properties of the
first Euler operator E ** will be examined further in Sec. 5.

We conclude this section with the following alternate
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form of Theorem 2.1 which is easily obtained (from the theo-
rem) using Lemma 1.1 with y = 0.

Corollary 2.2: For any Fe.% (% (U,x)) and any integer
a, where O<a <7 and 7 = 0,1,2,..., the identity

E A, ,~—~i,(F);B,i,-~-i,,)

- ﬁga (ﬁ )E Al [ g Bl iRy,

holds. [ ]

3. APRODUCT RULE AND ITS CONSEQUENCES

In the previous section, necessary conditions for a col-
lection of functions T7e€.% (% (U,x)) to be an Euler-La-
grange expression were obtained. In certain cases these con-
ditions are also sufficient as has been shown by Horndeski,’
Atherton and Homsy,' Anderson,® and Ahner and Moose.!!
In this section we study the result of applying the Euler oper-
ators to products of elements of .# (2 (U,x)). As a special
case of this we obtain a product rule for the Euler-Lagrange
operator which leads to very simple derivations of the above
mentioned sufficiency conditions.

Proposition 3.1: For F,Ge% (Z(U,x)),
S ﬂ Iyeeedy
B 0= § ()iDs @B r)

B=a

+D; .. (FE*""G)) G.D

Loy oty

Proof: To prove (3.1) we require the following Leibniz
rule from calculus,

0,.,¢6)= 3 ()PeutID, @, 6D

r=0

From the definition of the ath Euler operator (1.4) it follows
that

E*"(FG) = Z< I)V(Z)D’ff“""*

=

% (GF;A,i.~-~i,, +FG ;A,i.~-~i),)'

Applying (3.2) to the above we deduce that

EMTHEG) = 3 (= ()5 ()

T=0

>< [D(iu 4 1""-11 . r(G )Di«x T4 l""'r)F;A’ilmir

+ D(i" e, Y(F)Di” . |..-i7,)G ;A,i.‘..ir].

Redefining the range of the second summation on the right-
hand side of the above equation so that 7 = «,...,7, then us-
ing the fact that

() (Z2)-0) ()
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we interchange the summations in that equation to obtain

E*"Y(FG)

5 (o
X [é,( - 1)’(:)0:,. i ]+ 3 (;)D,-" e,

y=r7
noting the symmetry of il---iy. Equation (3.1) now follows
from this last equation and Eq. (1.4). U

A useful special case of Proposition 3.1 occurs when
a = 01in (3.1) yielding the product rule

(GYE™"(F)

iy

EA(FG)= ¥ [D,.,
=0

(F)E*""(G)], (3.3)

vl

where F,Ge.# (% (U,x)). Equation (3.3) is the basis of the
remaining results of this section.

A set of field functions 7 (U,x) = {p A} will be
called p-star-shaped with respect to % if for all #€[0,1],
(psiho)e? (Ux), where p:=1t(p,—p,) + p, and
(44 0)E? (Ux).

Theorem 3.1%°'°11: Suppose 7 (U,x) is p-star-shaped
with respect to % and let T"e.7 (7 (U,x)) satisfy

BT By = AR (3.4
for all o = 0,1,2,-.-. Then the function
1
Li= [ T~ tpt, (3.5)
0

where

T =T Cpg'PriPaivis Aos Aass A i)
satisfies

TA=E*(L). (3.6)

Proof: Equation (3.3) implies that
EP['T*(p—Pa)]

=774 $ EMT Y, —

a =0

OPA),i,..-i,,] .
In view of the fact that
ad — aJ

WP, IPpii,

we deduce from (3.4) that E " “(‘'T4) = 18T *®/3p ;...
Thus

EB[ITA(P )

o ¢t B
— TS [ T
apAl.

, a=0,12,.,

(pA,i,mi,, - OPA,i.---i‘,) >
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from which we deduce the formula
(dt'T®/dt) =E®['T*(p, — °p.)]. Equations (3.6) and
(3.5) follow upon integrating with respect to £ from O to 1.

While Theorem 3.1 is a major step towards a solution to
the inverse problem for field theories, it is still deficient in
certain aspects. Foremost among these is the possibility that
the given functions 7e.% (Z (U,x)) do not satisfy (3.4) yet
there exists a transformation to an equivalent'? set of func-
tions T “e.% (Z(U,x)) which do. The author does not know
of any progress towards resolving this problem except in the
case of single integral problems in the calculus of
variations."

Ancther difficulty with Theorem 3.1 which cannot be
resolved is the nature of the space of field functions & (U,x).
The theorem applies only when the field functions are star-
shaped and, for example, is inapplicable to Lorentz metric
tensor fields. Furthermore, whenever the function %, #0,
the resulting Lagrangian (3.5) depends upon %, in addition
to p, and hence is an element of & (¥ (U,x)), where
P Ux) = {pihaps ) 7P (Ux). (Note that %, is fixed
but p, and A, may range over different field function val-
ues.) This feature of Theorem 3.1 leads to some peculiar
consequences as will be seen in the following section. Note
that when %0 , 720 we must extend the definition of £ in
(3.6) to include .7 (Z (U,x)).

A partial solution to these difficulties can be obtained
for functions 7M€% (# (U,x)) which are homogeneous of
certain degrees in the field functions p , and their derivatives.
Since many functions 7" can be decomposed into a sum of
homogeneous terms, the following result, which is a trivial
consequence of (3.3), is of some use:

Proposition 3.2°: Let Te.% (#(U,x)) be homogeneous
of degree m in the p s and their derivatives. If 7 satisfies

EB,:',u-i,,(TA) = Bt 3.7
a= 0)1’2y'", then
(m + OT*=E*X(T%)). (3.8)

Proof: From Eq. (3.3) we find that
EATpp) =T+ 3 E*""T%)py,.;.
a=20
Applying (3.7) to the above yields the equation
EXT%p)=T*+ 3 T**"py,
a=0
from which (3.8) follows using Euler’s theorem on homo-
geneous functions.

Corollary 3.1: If m#% — 1, then T* = E4(L), where
1
75,01
m 1 Pr

To handle the case m = — 1 a different approach is
required. This is the topic of the next section.

4. APPLICATIONS OF A CERTAIN
HOMOGENEITY PROPERTY

Let A” denote the second order tensor density concomi-

L =
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tant of a metric tensor which is locally given by

A g i85 8asea) = V EGY, @.1)

where G ¥ is the Einstein tensor and g = |det(g;)|. (For fur-
ther notation see Ref. 14.) If we restrict attention to 4-spaces
M, then clearly at any point P of M,

A ij(tgab;tgab,c;tgabcd) = A ij(gab;gab,c;gab,cd)’ (42)
where feR". (49 is homogeneous of degree zero in g,, and its
derivatives.) It is well-known that 4% is derivable from a
variational principle and hence satisfies Egs. (3.7) with
P (Ux) = {g;}. Therefore, by Broposition 3.2,
AY=E%g,,A%)=E— \/gR ) as we expect. The scalar

density concomitant 4: = — \/gR is also homogeneous in
Z., and its derivatives, but of degree one.

Since A Y is a tensor density there is another homogene-
ity condition which it satisfies. Applying the transformation
x' = tx' (teR*) to A Y we deduce the relation

t’4 ij(gab;gab,c;gab,cd) =A ij(t Zgab;t 3gab,c;t ‘gab,cd)
at any point P of M, which simplifies using (4.2) to

t 2A ij(gab;gab,c;gab,cd) = A ij(gab;tgab,c;t zgab,ca’)' (43)

Since PeM is arbitrary (as is the metric g,,) it follows
that (4.3) holds throughout M for any metric tensor on M.

An important feature of (4.3) is that any tensor density
concomitant 7" ¥ of the metric and its first two derivatives
which satisfies (4.3) and in addition satisfies 77|, = 0 must

be a\/gG “where a is a constant.'* A significant observation
is that the scalar density A exhibits similar properties,
namely,

3 2A(gab;gab,v;gab,cn') =4 (gab;tgab,c;t 2gab,cd)? (44)

for all teR*. Furthermore, any scalar density concomitant of
the metric and its first two derivatives which satisfies (4.4)
must be a\/gR , where a is a constant.'* The natural prob-
lem to consider here is the extent to which the property (4.3)
of A% determines, through the relation 4V = E (4 ), the
property (4.4) of A.

To formulate the relevant theorems we shall require

some additional notation. Let Fe% (% (U,x)) and define for
y and y,, nonnegative integers,

L, o .
FQ):=FtTpgt" ppsst’ pp;..i;

o+ 1 +a
trd, ;e Aot o a/iﬂ,il,..,-“,), 4.5)

(no sums over f2), where rcR*. We shall be concerned with
those Fe # (Z (U,x)) for which F(¢) is defined for all rR*
and which satisfy the condition [generalizing (4.3) and
4.49)],

PF=F(), (4.6)

for some 3, 7, ¥, and all teR*. One of the important conse-
quences of (4.6) is that generally one can “reconstruct” the

function Fin the same sense that \/gG 9 was reconstructed
from (4.3). This reconstruction process can best be demon-
strated by examining a special case.
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Lemma4.1: Let 2(U,x) = {p,} andlet GeF (2 (U x))
satisfy (4.6) with ¥ = 0 and B a positive integer. If 2(U,x) is
such that lim, o.H (¢t )5 (2(Ux)) whenever
HeF (2(U,x)) and if G is of class C?, then G is a polynomial
in the derivatives of p ,. Furthermore G is a sum of terms of
the form

Ayiyoedy, Agfioeefy e A doeed,
#p.4) Paivi PArjis, PAa b,

where

zv:#k=ﬁ-D

K=1

The proof of Lemma 1.1 is basically the same as that
used to deduce Eq. (2.5) in Ref. 14. Differentiate 5 times with
respect to ¢ in (4.6) (with G instead of ) and then take the
limit as t—0".

The main result of this section can now be derived.

Theorem 4.1: Suppose Z (U,x) is such that
lim, .H (¢ )7 (#(Ux)) whenever He.# (7 (U x)). Let
T (Z (Ux)) satisfy

tPTA = T4(¢t), “.n

where teR* and 3, 7, and ¥, [cf. (4.5)] are all nonnegative
integers.

If there exists an Le# (Z (U,x)) (of order a in deriva-
tives of p ), defined throughout #(U,x) and of class (at
least) C#+ 7+ 2+ 1 for which T4 = E*(L), then

T4=EAL), (4.8)
where
- UMY N 4.9)

B ar

Proof: By direct computation using the chain rule we
deduce that for all zeR*,

EAIL(@)] =t"EA(L)¢).
Thus

1Ty =E* (L)),
and by (4.7) we deduce that

tP+YTA=EA[L(@)]. 4.10)

Dueto the fact that L (¢)is a differentiable function of the set
of real variables {£:0,4,0 4 5P 40 AA 25 A 0, | the
derivative d /dt commutes with the derivatives d/dp 4 ;... . If
we consider L (¢) as a function on x(U) X R*

[pa=p.(x), Ay =A4y(x")onx(U)), then the differentiabil-
ity requirements on L imply that the derivatives d /dt and
d /dx’' ( = D)) commute. Therefore, upon differentiating

3 + y times with respect to ¢ in (4.10) we deduce that
dP+7L ) )

A __ A
6+t =B (T

Equations (4.8) and (4.9) now follow from the above equa-
tion upon taking the limit as t—0".

Theorem 4.1 can often be used to solve the inverse prob-
lem considered in Sec. 3 when Theorem 3.1 and Proposition
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3.2 do not apply. As an example consider the tensor density
concomitant of a metric tensor given by

T% =VgR(1g"R — 2R + 2V gR ¥ — 2V ggR ¥ ,,

in a 4-space. The problem is to determine if 7Y = E (%),
where .% is a scalar density. Evidently, even if 7Y can be
shown to satisfy the conditions in (3.7), T ¥ is homogeneous
of degree — 1 in g, and its derivatives so that Proposition
3.2 will not apply. If we require that g,, be a Lorentzian
metric tensor then Theorem 3.1 is also inapplicable. We can
employ Theorem 4.1 by noting that under (4.5) (with y = 0)
we obtain the relation *T'Y = T¥(¢t). If . is a scalar density
concomitant of the metric tensor and its dertvatives, then by
demanding that 77 = E %) we find that the scalar density
7= Llim@/dt9.2(t)
4! o
must also satisfy T/ = E i(.Z). We show that Z isascalar
density by construction. Applying the replacement theo-
rem" to .7’ (t) we find that

uf(t) = c'f(gab;o;t zgabcd;"';t agabc.u-C.)’

where the g, ..., 8 = 2,...,a are the corresponding metric
normal tensors'® of g, Hence upon applying the derivatives
with respect to ¢ and then taking the limit as £—0" in the
result we find that

"? = naderstu(gkl)gabcdgrstu + naders(gkl)gabcdrs'

Since the metric normal tensors may be rewritten in terms of
covariant derivatives of the curvature tensor,"’ .7 can be
written in the form

}. _ ;adersm(gkl)RabcdRrslu + gabcdrs(gkl)Rabcd!,(s)
4.11)

where the { coefficients are tensor densities built from g,
only. The last term in (4.11) is clearly a divergence and it can
be shown'¢ that the first term must take the form

>z :a\/;R 2 +b\/gR,.jR'f
+ C\/gRijklR 94 de' 'R abinabkl

where a,b,¢, and d are constants. The coefficients of d in .77,
has an identically vanishing Euler-Lagrange expression.'’
Since the Euler—Lagrange expression corresponding to
\/g(R > 4R,R 7+ R R ") also vanishes identically"” it
is clear that .7, will have the same Euler-Lagrange expres-
sions as

Sy=(@—VgR?+ (b +4)VgRRY.
Demanding that E/(.¥’) = T ¥ implies that E%.%",) = T
which!® yields the resulta —c = land b + 4¢c = 0,ie.,

T = Ei(VgR?.

In summary, we have answered the question of whether

or not T ¥ was an Euler—Lagrange tensor by explicitly con-
structing all possible effective Lagrangians which were sca-
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lar densities. Then by direct computation we found a suitable
Lagrangian.

Another application of Theorem 4.1 is the problem of
determining a scalar density . which yields the Cotton ten-
sor density defined by

CY=¢€""R/,,+ R,
(in a 3-space), as an Euler-Lagrange expression. Horndeski’

has shown that C¥ satisfies Egs. (3.4) (o, = g;) and has con-
structed a scalar density 7~ of the form

7 = V(gab;'";gab,cde;hab;"';hab,cde)

for which E 4(?") = CY, where g, and A_, are both positive
{for negative) definite metric tensors. This result is basically
a consequence of Theorem 3.1. The case of indefinite metrics
has not been solved at present but if we seek scalar densities
built from g, and its derivatives (only), Theorem 4.1 can be
used to prove the following:

Theorem 4.2: There does not exist a class C* ** scalar

density . of the form .& = £ (8,4:8u5,c3"8ab,c,c,) for
which E (%) = C ¥ in a 3-space.
The proof of Theorem 4.2 can be found in Ref. 19. If we relax
the demand that .¥" be a scalar density, then the Lagrangian
Z of (4.9) can be written, after subtracting out a divergence,
in the equivalent form

1 __ g abcpgrstu abepqrs,
L § ab, cgpqrgstu +§ gabcgpqrs’

where the & coefficients are functions of g, only. The ques-
tion of the existence of coefficients £ for which
E%L" = CYis unresolved at present.

In spaces of dimension (2n + 1) for n = 2,3,..., one can
define tensor densities which exhibit properties similar to
those of C¥ tensor. It can be shown that Theorem 4.2 general-
izes to incorporate these tensors® so that C¥ cannot be con-
sidered unique (in the sense that it does not follow from a
scalar density Lagrangian built from one metric).

5. EQUIVALENT LAGRANGIANS AND THE
FIRST EULER OPERATOR

In this section we consider the field functions
TUx):= |[p,, Jt_ | where for each M, P4, 1s a tensor. De-
fine the integer «,, to be the number of covariant indices on
P4, minus the number of contravariant indices on p 4, The
following lemma is basic to our considerations here:

Lemma 5.1: Suppose T™" is a tensor density where for
eachA,, TheF (T (U,x)). (The number of covariant indices
on T equals the number of contravariant indices on P4 and
similarly for the contravariant indices on 7**.) Then

n— )T = § (Ku S Ay

pu=1 a=0

N T AB e,
+ 2 a PB i,

a=1

(5.1)

where 7 is the dimension of the space. U
The proof of Lemma 5.1 follows from Theorem 2.1 of Ref. 21
upon contracting over s and 7 in (2.14) of that paper.
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Theorem 5.1: If for some Le.7 (7 (Ux)), E™(L)is a
tensor density for each v = 1,...,uu,, then

E“L)=E™L),

where

‘ 1 i
Li=— $ WE“LIp, —E**LIp, ). (52)
p=1

Proof: Applying Proposition 3.1 we find that
E*L")

£ A i, [E B"(L )]pB,v""""” J

+KVE""(L>—[S S EE L) oy, |

+DEM(L )).

Theorem 2.1 and Corollary 2.1 imply that the above equa-
tion becomes

E*LY)

- $ « w S BN g

p=1 a—

[+ 2 @)

[S S EM LY ]

=1la=0

+D,E“(L)+[§j S aE @y gy ]

=ta=1

However,
DE*L) = i Z EMILY " py
=1la=
and thus by Lemma 5.1 applied to £ “*(L ) we find that
E*L)=E"L),
proving the theorem. ]

Since for tensorial p,, and scalar densities
»

LeF (T (Ux)), E*(Z) is always a tensor density,’ the
following is an obvious consequence of Theorem 5.1:

Corollary 5.1: If L% (7 (U,x)) is a scalar density,
then for any v = 1,140,

ENSL) =

where

ENZ),

LS o £
3
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The above results indicate that the first Euler operators
(E"*(L))and the Euler-Lagrange expressions determine a
Lagrangian (provided the Euler-Lagrange expressions are
tensor densities). In view of the analysis of Sec. 2 [cf. Egs.
(2.10) and (2.11)], the Euler-Lagrange expressions are al-
most determined by the first Euler operators. Thus, the first
Euler operators contain most of the information contained
in the Lagrangian. In some cases the Lagrangian (and there-
fore the Euler-Lagrange expressions) is completely deter-
mined by the first Euler operators, as is shown in the
following:

Proposition 5.1: Let Le.# (& (U,x)) and suppose for

each v, E *(L ) is a tensor density, is homogeneous of degree
m, inp , and homogeneous of degree m,, + 1 inp, forall

pv. Ifn — 2k (m, + 1)7-0, then for all v,

E'(L)=E™L), (5.3)
where
_— Ly —1 o
L= =[n-§ wom+n] ' 8 B @pus
=1 o=1
(5.9
Proof: By Proposition 3.2 we have that
K, K(m, +1
E"‘(—E B )pB‘) = —(——)EA‘(L ). (5.5)
n n

Equation (3.3) and Corollary 2.1 imply that

K, Kl = 5 iyered
E(—E " (L )os ) =Ly ENLY" pp i
n " n .=, o
for all u==v. The homogeneity of E A(L)in Ps, then yields
the equation

E“(L).

K“(m# +1
- (5.6)

E“(%E (L )p,,“) _

Theorem 5.1 together with Egs. (5.2), (5.5), and (5.6) imply
that for all v = 1,.. 1,

Efwy=§ (M’;LQEA‘(L ))

o 1

i
n p "

=1

Equations (5.3) and (5.4) now follow from this last equation,
proving the proposition.

Given an Le# (.7 (U,x)) which is homogeneous of de-
greem, + linp, forallv = 1,...,u,, theexpressions £ (L)
are homogeneous of degree m,, in p,, and homogeneous of
degreem, + 1inp, for all v£u. This leads to the following

direct consequence of Proposition 5.1 which is similar to
Theorem 6 of Ref. 2:

Corollary 5.1: If .¥€.# (7 (U,x)) is a scalar density
which is homogeneous of degree m, + 1inp, forall
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= 1,00, then provided
n— 3tk (m,  )#0,EN(L)= EE_’?) for each
v = 1,...,14e, where ¥ is given by (5.4).

As an application of the above analysis, consider the

scalar density . = \/gR in a 4-space. This scalar density is
homogeneous of degree one in g,, and its derivatives. Here
« = 2 and therefore the Euler-Lagrange expression corre-
sponding to .7’ is the same as that corresponding to the func-
tion .7, where

T = - %E rs,t(j)grs,t'
By the definition of the first Euler operator we find that
7 =18, (VeR)™ g, (VgRY™,,
and thus
Z =48, (VegRY™ + (VgRY™"g,, ., — [(VeR)[™],

Carrying out the indicated operations in the above equation
we deduce that*

u*

7 =VgR—(VgR"ug ),

or CXpIICI [l y y
{_] k m l 7

- — [ k

7 =Vilel/)
lr

which is the usual first order Lagrangian in general

relativity.®
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